ANALISIS KANAL-KANAL LANDSAT 8 OLI UNTUK PEMETAAN BATIMETRI DI SEKITAR PULAU PUTRI, KOTA BATAM
Abstract
Batimetri mempunyai peran penting dalam perencanaan wilayah pesisir sehingga pemetaan batimetri dangkal sangat diperlukan. Penginderaan jauh merupakan salah satu metode yang efisien, mudah dan murah untuk pemetaan tersebut. Penelitian ini bertujuan untuk menganalisis kanal-kanal terbaik pada Landsat 8 OLI untuk memetakan batimetri dan kedalaman optimum yang dapat dipetakan sehingga dapat digunakan sebagai rujukan dalam memanfaatkan data penginderaan jauh untuk pemetaan tersebut. Lokasi kajian dilakukan di pulau Putri, Kota Batam, Provinsi Kepulauan Riau. Analisis regresi linear menunjukkan kanal tunggal terbaik untuk pemetaan batimetri adalah kanal hijau (kanal 3), diikuti oleh kanal merah (kanal 4) dan kanal inframerah dekat (kanal 5). Namun pemetaan batimetri dengan kombinasi kanal menghasilkan koefisien determinasi yang lebih baik. Analisis best subset menunjukkan pemetaan batimetri pada kedalaman 0 – 20 m menggunakan kanal 2, 3, 5, dan 6 dengan koefisien determinasi (R2) 85,4%; kedalaman 0 – 25 m menggunakan kanal 1, 3, 5, 6, dan 7 dengan R2 75%; dan pemetaan kedalaman 0 – 50 m menggunakan kanal 1, 3, dan 4 dengan R2 49,1%. Hasil pemetaan batimetri menggunakan Landsat 8 OLI secara umum lebih efektif dan mempunyai akurasi tinggi pada kedalaman 0 – 20 m dan semakin berkurang kemampuannya pada kondisi perairan yang semakin dalam.
Kata kunci: Batimetri, Landsat 8 OLI, kanal, algoritma.
Bathymetry has an important role in planning coastal areas so that mapping of shallow bathymetry is needed. Remote sensing is one of the efficient, easy and inexpensive methods for mapping. This study aims to analyze the best channels in Landsat 8 OLI for mapping bathymetry and optimum depth that can be mapped so that it can be used as a reference in utilizing remote sensing data for mapping. The location of the study was conducted on the Putri island, Batam City, Riau Islands Province. Linear regression analysis shows the best single channel for bathymetry mapping is the green channel (channel 3), followed by the red channel (channel 4) and the near infrared channel (channel 5). But bathymetry mapping with channel combinations produces a better coefficient of determination. Best subset analysis shows bathymetry mapping at depths of 0-20 m using channels 2, 3, 5, and 6 with a coefficient of determination (R2) of 85.4%; depth of 0 - 25 m using channels 1, 3, 5, 6, and 7 with R2 75%; and mapping depth 0 - 50 m using channels 1, 3, and 4 with R2 49.1%. The results of bathymetry mapping using Landsat 8 OLI are generally more effective and have a high accuracy at a depth of 0-20 m and are increasingly reduced in conditions of deeper water conditions.
Keywords: Bathymetry, Landsat 8 OLI, Band, Algorithm
Keywords
Full Text:
PDFReferences
Aranda, A., Ferreira, G., Scarpellini, S., dan Sastresa, E. L. (2012): Multiple regression models to predict the annual energy consumption in the Spanish banking sector, Energy & Buildings, 49, 380–387. https://doi.org/10.1016/j.enbuild.2012.02.040
Bakker, W. H., Grabmaier, K. A., Huurneman, G. C., van der Meer, F. D., Prakash, A., Tempfli, K., Gieske, A. S. M., Hecker, C. A., Janssen, L. L. F., Parodi, G. N., Reeves, C. V, Weir, M. J. C., Gorte, ben G. H., Horn, J. A., Pohl, C., van Ruitenbeek, F. J., dan Wolday, T. (2004): Principles of Remote Sensing, (N. Kerle, L. L. F. Janssen, dan G. C. Huurneman, Ed.), Enschede, The Netherlands, The International Institute for Geo-Information Science and Earth Observation (ITC), 3 ed., 250.
Gao, J. (2009): Bathymetric mapping by means of remote sensing : methods , accuracy and limitations, Progress in Physical Geography, 33(1), 103–116. https://doi.org/10.1177/0309133309105657
Geurhaneu, N. Y., dan Susantoro, T. M. (2016): Coastline Changes of Putri Island-Batam City Using Satellite Image Data Year 2000-2016, Journal of Marine Geology, 14(2), 79–90.
Green, E. P., Mumby, P. J., Edwards, A. J., dan Clark, C. D. (1996): A review of remote sensing for the assessment and management of tropical coastal resources, Coastal Management, 24(1), 1–40. https://doi.org/10.1080/08920759609362279
Hakim, L., Lazuardi, W., Astuty, I. S., Hadi, A. Al, Hermayani, R., Noviandias, D., dan Dewi, A. C. (2018): Assessing WorldView-2 Satellite Imagery Accuracy for Bathymetry Mapping in Pahawang Island, Lampung, Indonesia, IOP Conf. Series: Earth and Environmental Sciences, Yogyakarta, Indonesia, IOP Publishing, 1–9. https://doi.org/10.1088/1755-1315/165/1/012027
Irons, J. R., Dwyer, J. L., dan Barsi, J. A. (2012): The next Landsat satellite : The Landsat Data Continuity Mission, Remote Sensing of Environment, 122, 11–21. https://doi.org/10.1016/j.rse.2011.08.026
Jagalingam, P., Akshaya, B. J., dan Hegde, A. V. (2015): Bathymetry Mapping Using Landsat 8 Satellite Imagery, Procedia Engineering, Elsevier B.V., 116, 560–566. https://doi.org/10.1016/j.proeng.2015.08.326
Jian, L., Jie, Z., dan Yi, M. A. (2017): A spatial resolution effect analysis of remote sensing bathymetry, Acta Ocean. Sin, 36(7), 102–109. https://doi.org/10.1007/s13131-017-1088-x
Kuiper, S., dan College, G. (2008): Introduction to Multiple Regression : How Much Is Your Car Worth ?, Journal of Statistic Education, 16(3), 1–18. https://doi.org/10.1080/10691898.2008.11889579
Lee, K. R., Kim, A. M., Olsen, R. C., dan Kruse, F. A. (2011): Determination of bottom-type and bathymetry using WorldView-2, SPIE Proceedings Volume 8030, Ocean Sensing and Monitoring, Orlando, Florida, United States, SPIE Digital Library, 8030, 1–14. https://doi.org/10.1117/12.883578
Legleiter, C. J., dan Harrison, L. R. (2019): Remote sensing of river bathymetry: evaluating a range of sensors, platforms, and algoritms on the upper Sacramentor river, California, USA, Water Resources Research, 55(March), 1–28. https://doi.org/10.1029/2018WR023586
Li, P., Jiang, L., dan Feng, Z. (2014): Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors, Remote Sensing, 6(1), 310–329. https://doi.org/10.3390/rs6010310
Lyzenga, D. R. (1985): Shallow-water bathymetry using combined lidar and passive multispectral scanner data, International Journal of Remote Sensing, 6(1), 37–41. https://doi.org/10.1080/01431168508948428
Stumpf, R. P., Holderied, K., dan Sinclair, M. (2003): Determination of water depth with high-resolution satellite imagery over variable bottom types, Limnology and Oceanography, 48(1, part 2), 547–556. https://doi.org/10.4319/lo.2003.48.1_part_2.0547
Susantoro, T. M., Wikantika, K., Saepuloh, A., dan Harsolumakso, H. A. (2018): Selection of Vegetation Indices for Mapping the Sugarcane Condition Around the Oil and Gas field of North West Java Basin, Indonesia, IOP Conf. Series: Earth and Environmental Sciences, 149(012001), 1–10. https://doi.org/10.1088/1755-1315/149/1/012001
Widayati, C. S. W. (2009): Komparasi Beberapa Metode Estimasi Kesalahan Pengukuran, Jurnal Penelitian dan Evaluasi Pendidikan, 13(2), 182–197.
Yunus, A. P., Dou, J., Song, X., dan Avtar, R. (2019): Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat-8 Images, Sensors, 19(2788), 1–20. https://doi.org/:10.3390/s19122788
DOI: http://dx.doi.org/10.32693/jgk.18.1.2020.648
Refbacks
- There are currently no refbacks.