ANALISIS DATA BATIMETRI MENGGUNAKAN CITRA SATELIT SENTINEL-2 (STUDI KASUS: PULAU PUTRI, BATAM)

Pandu Akhbar Antares, Ankiq Taofiqurohman, Nineu Yayu Gerhaneu, Alexander M. A. Khan, Subiyanto Subiyanto


Abstract


Data batimetri secara konvensional umumnya diperoleh dengan menggunakan teknik echo- sounding yakni dengan instrumen echosounder. Sejumlah masalah atau hambatan dari metode tersebut diantaranya biaya operasional yang mahal, perolehan data tidak multi temporal, kecuali dengan pengukuran ulang. Perkembangan teknologi memungkinkan metode pengukuran batimetri menjadi semakin beragam, salah satu metode alternatifnya adalah menggunakan metode penginderaan jauh dengan memanfaatkan citra satelit atau biasa disebut sattelite derived bathymetry (SDB). Lokasi penelitian ini berada di Pulau Putri, Batam yang dilakukan untuk mengkaji perbandingan data batimetri yang dihasilkan dari citra Sentinel-2 dengan beberapa citra yang diambil pada tanggal berbeda, dengan data pengukuran in situ. Nilai kedalaman dikaji menggunakan metode band ratio dengan memanfaatkan band biru dan hijau. Hasil kedalaman dari Sentinel-2 kemudian dibandingkan berdasarkan nilai Root Mean Square Error (RMSE), koefisien determinasi (R2), dan Total Vertical Uncertainty (TVU). Hasil penelitian ini menunjukkan citra bulan Januari merupakan citra terbaik dengan nilai koefisien determinasi sebesar 0,372. Hasil RMSE menunjukkan semakin tinggi tingkat kesalahan seiring bertambahnya kedalaman. Nilai RMSE pada kedalaman 0 - 30 meter berkisar antara 0,1 - 0,3 meter. Sedangkan pada kedalaman lebih dari 30 meter nilai RMSE bertambah dari 1 - 3 meter. Kualitas SDB dapat diidentifikasi berdasarkan nilai TVU. Berdasarkan analisis pada 8479 titik data insitu masing-masing hanya 645, 318, dan 179 titik data yang terklasifikasi dalam Ordo 2, Ordo 1, dan Ordo spesial.


Keywords


Batimetri, Band ratio, Sentinel-2, Pulau Putri, Citra satelit

References


Ashphaq, M., Srivastava, P. K., & Mitra, D. 2021. Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. Journal of Ocean Engineering and Science, 6(4), 340–359. https:// doi.org/10.1016/j.joes.2021.02.006

Bobsaid, M. W., & Jaelani, L. M. 2017. Studi Pemetaan Batimetri Perairan Dangkal Menggunakan Citra Landsat 8 dan Sentinel-2A (Studi Kasus : Perairan Pulau Poteran dan Gili Iyang, Madura). Institut Teknologi Sepuluh November.

Caballero, I., & Stumpf, R. P. 2019. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuarine, Coastal and Shelf Science, 226, 106277. https://doi.org/ 10.1016/j.ecss.2019.106277

Casal, G., Harris, P., Monteys, X., Hedley, J., Cahalane, C., & McCarthy, T. 2020. Understanding satellite- derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIScience & Remote Sensing, 57(3), 271–286. https://doi.org/10.1080/ 15481603.2019.1685198

Casal, G., Monteys, X., Hedley, J., Harris, P., Cahalane, C., & McCarthy, T. 2019. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. International Journal of Remote Sensing, 40(8), 2855–2879. https://doi.org/ 10.1080/01431161.2018.1533660

Cerdeira-Estrada, S., Heege, T., Kolb, M., Ohlendorf, S., Uribe, A., Muller, A., Garza, R., Ressl, R., Aguirre, R., Marino, I., Silva, R., & Martell, R. 2012. Benthic habitat and bathymetry mapping of shallow waters in Puerto morelos reefs using remote sensing with a physics based data processing. 2012 IEEE International Geoscience and Remote Sensing Symposium, 4383–4386. https://doi.org/10.1109/IGARSS.2012.6350402

Gao, B. 1996. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034- 4257(96)00067-3

Gerhaneu, N. Y & Muji, T. 2020. Analisis Kanal-Kanal Landsat 8 Oli untuk Pemetaan Batimetri di Sekitar Pulau Putri, Kota Batam. Jurnal Geologi Kelautan. 18. 10.32693/jgk.18.1.2020.648.

Hedley, J. D., Harborne, A. R., & Mumby, P. J. 2005. Technical note: Simple and robust removal of sun glint for mapping shallow‐water benthos. International Journal of Remote Sensing, 26(10), 2107–2112. https://doi.org/10.1080/ 01431160500034086

Hedley, J. D., Roelfsema, C., Brando, V., Giardino, C., Kutser, T., Phinn, S., Mumby, P. J., Barrilero, O., Laporte, J., & Koetz, B. 2018. Coral reef applications of Sentinel-2: Coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8. Remote Sensing of Environment, 216, 598–614. https://doi.org/ 10.1016/j.rse.2018.07.014

IHO & IOC. 2018. The IHO-IOC GEBCO Cook Book. Monaco: IHO.

IHO. 2008. IHO Standards For Hydrographic Surveys 5 th Edition.

Jawak, S. D., Vadlamani, S. S., & Luis, A. J. 2015. A synoptic review on deriving bathymetry information using remote sensing technologies: models, methods and comparisons. Advances in remote Sensing, 4(2), 147-162.

Leder, T. D., & Duplančić Leder, T. 2020. Optimal Conditions for Satellite Derived Bathymetry (SDB)—Case Study of the Adriatic Sea. Proceedings of the FIG Working Week, Amsterdam, The Netherlands, 10-14.

Manessa, M. D. M., Haidar, M., Hartuti, M., & Kresnawati, D. K. 2018. Determination of The Best Methodology for Bathymetry Mapping Using Spot 6 Imagery: A Study Of 12 Empirical Algorithms. International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(2), 127. https://doi.org/10.30536/j.ijreses.2017.v14.a2827

Mateo-Pérez, V., Corral-Bobadilla, M., Ortega- Fernández, F., & Vergara-González, E. P. 2020. Port Bathymetry Mapping Using Support Vector

Machine Technique and Sentinel-2 Satellite Imagery. Remote Sensing, 12(13), 2069. https:// doi.org/10.3390/rs12132069

Mavraeidopoulos, A. K., Pallikaris, A., & Oikonomou, E. 2017. Satellite Derived Bathymetry (SDB) and Safety of Navigation. The International Hydrographic Review, 17.

Meliala, L., Wibowo, W. A., & Amalia, J. 2019. Satellite Derived Bathymetry on Shallow Reef Platform: A Preliminary Result from Semak Daun, Seribu Islands, Java Sea, Indonesia. KnE Engineering. https://doi.org/10.18502/keg.v4i3.5849

Poliyapram, V., Raghavan, V., Metz, M., Delucchi, L., & Masumoto, S. 2017. Implementation of Algorithm for Satellite-Derived Bathymetry using Open Source GIS and Evaluation for Tsunami Simulation. ISPRS International Journal of Geo- information, 6(3), 89.

Poursanidis, D., Traganos, D., Chrysoulakis, N., & Reinartz, P. 2019. Cubesats Allow High Spatiotemporal Estimates of Satellite-Derived Bathymetry. Remote Sensing, 11(11), 1299. https:// doi.org/10.3390/rs11111299

Rahman, A. 2020. Depth Estimation Of Shallow Water Using Multispectral Satellite Imagery Sentinel-2a. Jurnal Segara, 16(3). https://doi.org/10.15578/ segara.v16i3.8562

Ramadhan L, M., Sasmito, B., & Hadi, F. 2021. Analisis Pengaruh Nilai Kekeruhan Air Terhadap Akurasi Satellite Derived Bathymetry Dengan Algoritma Stumpf (Studi Kasus: Pantai Kartini, Jawa Tengah). Jurnal Geodesi Undip, vol. 10, no. 2, pp. 36-46, (Issue 10). https://doi.org/10.14710/ jgundip.2021.30642

Said, N. M., Mahmud, M. R., & Hasan, R. C. 2017. Satellite-Derived Bathymetry: Accuracy

Assessment on Depths Derivation Algorithm for Shallow Water Area. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W5, 159–164. https:/ /doi.org/10.5194/isprs-archives-XLII-4-W5-159- 2017

Smith, W., & Sandwell, D. 2004. Conventional Bathymetry, Bathymetry from Space, and Geodetic Altimetry. Oceanography, 17(1), 8–23. https://doi.org/10.5670/oceanog.2004.63

Stumpf, R. P., Holderied, K., & Sinclair, M. 2003. Determination of Water Depth with High- Resolution Satellite Imagery Over Variable Bottom Types. Limnology and Oceanography, 48(1part2), 547–556. https://doi.org/10.4319/ lo.2003.48.1_part_2.0547

Wibisono, F. B., Ibrahim, A. L., & Hartuti, M. 2021. Perolehan Data Batimetri Menggunakan Metode Satellite Derived Bathymetry untuk Percepatan Pembuatan Electronic Navigational Chart di Perairan Raja Ampat: Acquisition of The Bathymety Data using Satellite Derived Bathyemetry Method to Accelerate The Making of Electronic Navigational Chart in Raja Ampat Waters. Jurnal Hidropilar, 7(1), 31–60. https:// doi.org/10.37875/hidropilar.v7i1.202

Wright, C. W., Kranenburg, C., Battista, T. A., & Parrish, C. 2016. Depth calibration and validation of the experimental advanced airborne research lidar, EAARL-B. Journal of Coastal Research, 76(sp1), 4–17. https://doi.org/10.2112/SI76-002

Yunus, A. P., Dou, J., Song, X., & Avtar, R. 2019. Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat- 8 Images. Sensors, 19(12), 2788. https://doi.org/ 10.3390/s19122788




DOI: http://dx.doi.org/10.32693/jgk.22.1.2024.852

Refbacks

  • There are currently no refbacks.



Terakreditasi oleh: Direktorat Jenderal Penguatan Riset dan Pengembangan, Kemenristek Dikti