Characteristic of Shallow Subsurface Quaternary Sediment in Nongsa Isle, Part of Putri Islands, Batam, Based on Georadar Data Interpretation

Undang Hernawan, Nineu Yayu Geurhaneu, Muhammad Zulfikar

Abstract


Nongsa Isle belongs to Putri Islands in Batam, is the outermost island that need to be protected either from natural hazards and anthropogenic factor. Therefore, this study was conducted by performing Ground Penetrating Radar analysis, in order to understand the geological condition particularly sedimentology and its process. We used Sirveyor 20 GPR equipment type with MLF antenna frequency 40 Mhz and Radan 5 as processing software, which include time zero correction, spatial filter, deconvolution, migration and adjustment of amplitude and signal gain. Data interpretation was conducted based on radar facies methodology that describes georadar image/radargram. The study result showed differences of sedimentary facies based on three differences of radar facies units, with the first layer (unit 1) is the youngest unit has thicknesses ranging from 3.5 – 5 m that characterized by parallel, strong reflector, high amplitude and continuous reflector configurations, unit 2 from 5 – 11 meter of depth, indicates parallel reflector pattern with medium-high amplitude and continuous, and unit 3 which is the oldest unit with thickness until penetration limit (11 – 20 m), characterized by a configuration of sub parallel – hummocky reflectors that are undulating, low-medium amplitude reflectors. Based on radar facies characteristics such as reflector configuration, reflection amplitude, and reflection continuity, the differencies of depositional facies are changes from fluvial – coastal plain.

Keywords


GPR;radar facies;Nongsa Isle;Batam;subsurface sediment

Full Text:

PDF

References


Allen, R.L., 1979. Studies in fluviatile sedimentation: An elementary geometric model for the connectedness of avulsion-related channel sand bodies, Sedimentary Geology, 24: 253-267.

Al-Syukri, H., Mahdi, H., and Al-Kadi, O., 2006. Application of ground penetrating radar for near surface geology, 166-184 at: https://www.researchgate.net/publication/266047479. Accessed: Nov 19th, 2019.

Beres Jr. M. and Haeni, F.P., 1991. Application of Ground Penetrating Radar methods in hydrogeologic studies, Ground Water, 29(3): 375-386.

Beres, M., Huggenberger, P., Green, A.G., and Horstmeyer, H., 1999. Using two- and three-dimensional georadar methods to characterize glaciofluvial architecture, Sedimentary Geology, 129: 1-24

Bristow, C. 1995. Facies analysis in the Lower Greensand using Ground-Penetrating Radar. Journal of the Geological Society, London, 152: 591-598.

Budiono, K., 2013a. The characteristic of coastal subsurface Quartenary sediment based on Ground Probing Radar (GPR) interpretation and core drilling result of Anyer coast, Banten province, Bulletin of the Marine Geology, 28(2): 83-93.

Budiono, K., 2013b. The image of subsurface Tertiary – Quartenary deposit based on ground penetrating radar records of Subi Kecil Island coast, Natuna District, Riau Archipelago province, Bulletin of the Marine Geology, 28(1): 31-41.

Budiono, K., Handoko, Hernawan, U., and Latuputty, G., 2010. Penafsiran struktur geologi bawah permukaan di kawasan semburan lumpur Sidoarjo, berdasarkan penampang Ground Penetrating Radar (GPR), Jurnal Geologi Indonesia, 5(3): 187-195.

Budiono, K., Noviadi, Y, Latuputty, G, Hernawan, U., 2012. Investigation of ground penetrating radar for detection of road subsidence northcoast of Jakarta, Indonesia, Bulletin of the Marine Geology, 27(2): 87-97.

Budiono, K. and Latuputty. G., 2008. Subsurface geological condition of several land coastal zone in Indonesia based on the GSSI Ground Probing Radar (GPR) record interpretation, Bulletin of the Marine Geology, 23(1): 9-17.

Busby, J.P., Cuss, R.J., Raines, M.G., and Beamish, D., 2004. Application of Ground Penetrating Radar to geological investigations, British Geological Survey Internal report, IR/04/21, 33pp.

Cassidy, N.J., 2009. Ground Penetrating Radar Data Processing, Modelling and Analysis in Ground Penetrating Radar Theory and Applications, edited by H M Jol, Elsevier B. V., Amsterdam: 144-176.

Chlaib, H.K., Mahdi, H., Al-Syukri, H., Mehmet M.S., Catakli, A., Najah, A., 2014. Using ground penetrating radar in levee assesment to detect small scale animal burrows, Journal of Applied Geophysics, 103: 121-131.

Chowksey, V., Joshi, P., Maurya,, D.M., and Chamyal, L.S., 2011. Ground penetrating radar characterization of fault-generated Quaternary colluvio-fluvial deposits along the seismicity active Kachchh Mainland Faults, Western India, Research communication, Current Science, 100(6): 915-921.

Ekes, C. and Hickin, E.J., 2001. Ground penetrating radar facies of the paraglacial Cheekye Fan, southwestern British Columbia, Canada, Sedimentary Geology, 143: 199-217.

Elfarabi, Widodo, A., and Syaifudin, F., 2017. Pemetaan bawah permukaan pada daerah Tanggulangin, Sidoarjo dengan menggunakan metode Ground Penetrating Radar (GPR). Jurnal Geosaintek, 3(1): 45-50.

Ferreira, M.Q., 2019. Ground penetration radar in geotechnic. Advantage and limitations, IOP Conference Series: Earth and Environmental Science, 221: 1-12.

Geurhaneu, N.Y. and Susantoro, T.M., 2016. Perubahan garis pantai Pulau Putri-Kota Batam dengan menggunakan data citra satelit tahun 2000-2016, Jurnal Geologi Kelautan, 14(2): 79-90.

Hanebuth, T.J.J., Stattegger, K., and Saito, Y., 2002. The architecture of the central Sunda Shelf (SE Asia) recorded by shallow-seismic surveying. Geo-Marine Letters, 22: 86–94.

Hernawan, U, Geuhaneu, N.Y., Latuputty, G., 2018, Karakteristik pantai dan bahaya abrasi di Pulau Putri, Nongsa, Batam, Oseanologi dan Limnologi di Indonesia, 3(2): 137-153.

Huggenberger, P. 1993. Radar facies: recognition of characteristic braided river structures of the Pleistocene Rhine gravel (NE part of Switzerland). In: Best, J. & Bristow, C. S. (eds) Braided Rivers. Geological Society, London, Special Publications, 75: 163-176.

Jatmiko, F.A.W., Mandang, I., and Budiono, K., 2016. Interpretasi sedimen bawah permukaan tanah dengan menggunakan metode GPR (Ground Penetrating Radar) di daerah pantai Kulon Progo Daerah Istimewa Yogyakarta, Prosiding Seminar Sains dan Teknologi FMIPA Unmul, 1(1): 13-17.

Jol, H.M., and Smith, D.G., 1991. Ground penetrating radar of Northern Lacustrine Deltas. Canadian Journal of Earth Sciences, 28: 1939-1947.

Kusnama, K. S., 1994, Peta Geologi Lembar Tanjungpinang, Sumatera skala 1 : 250.000, Pusat Penelitian dan Pengembangan Geologi, Bandung.

Moysey, S., Rosemary, J.K., and Hary, M., 2006. Texture – based on classification of ground-penetrating radar images, Geophysics, 71: k111-k118.

Noviadi, Y., 2014. Characteristic of shallow subsurface lithologi based on ground probing radar data interpretation at Temaju coast, Sambas distric, West Kalimantan province, Bulletin of the Marine Geology, 29(2): 61-70.

PPPGL (Pusat Penelitian dan Pengembangan Geologi Kelautan), 2005, Peta Geologi Kelautan Lembar 1017 Batam – Riau Kepulauan, Pusat Penelitian dan Pengembangan Geologi Kelautan, Bandung. Unpublished.

Raharjo, P., Yosi, M., 2017. The identification of land subsidence by levelling measurement and GPR data at Tanjung Emas harbour, Semarang, Bulletin of the Marine Geology, 31(1): 41-50.

Reynolds, J., 1997. An Introduction to Applied and Environmental Geophysics, Second Edition, Wiley Blackwell, a John Wiley & Sons, Ltd. UK. 710pp.

Sathiamurthy, E. and Voris, H.K., 2006. Maps of Holocene sea level trangression and submerged lakes on the Sunda Shelf. The Natural History Journal of Chulalongkorn University, supplement 2: 1-44.

Shan, X., Yu, X., Clift, P.D., Tan, C., Jin, L., Li, M., and Li, W., 2015. The ground penetrating radar facies and architecture of a paleo-spit from Huangqihae Lake, North China: Implication for genesis and evolution, Sedimentary Geology, 323: 1-14.

Shofyan, M.S., Hilyah, A., and Pandu G.N.R.J., 2016. Penerapan metode very low frequency electromagnet (VLF-EM) untuk mendeteksi rekahan pada daerah Tanggulangin, Sidoarjo, Jurnal Geosaintek, 02(02): 129-134.

Silvast, M. and Wiljanen, B., 2008. Onkalo EDZ measurement using Ground Penetrating Radar Method, Working Report 2008-58, Posiva OY, Finland, 33pp.

Solihuddin, T., 2014. A Drowning Sunda Shelf model during Last Glacial Maximum (LGM) and Holocene. Indonesian Journal on Geoscience, 1(2): 99 – 107.

Somantri, A.P., Arya, P., and Iryanti, M., 2016. Aplikasi metode ground probing radar terhadap pola retakan di bendungan Batu Tegi Lampung, Wahana Fisika, 1(1): 32-41.

Sjöberg, Y., Marklund, P., Pettersson, R. and Lyon, S.W., 2015. Geophysical mapping of Palsa Peatland Permafrost, The Cryosphere, 9: 465-478.

Tamura, L. N., de Almeida, R.P., Taioli, F., Marconato, A. and Janikian, L., 2016. Ground penetrating radar investigation of depositional architecture: the São Sebastião and Marizal Formations in the Cretaceous Tucano Basin (Northeeastern Brazil), Brazilian Journal of Geology, 46(1): 15-27.

van Heteren, S., Fitzgerald, D.M., Mckinlay, P.A. and Buynevich, I.V., 1998. Radar fasies of paraglacial barrier systems: coastal New England, USA, Sedimentology, 45: 181-200.

van Overmeeren, R.A. 1998. Radar facies of unconsolidated sediments in The Netherlands - a radar stratigraphy interpretation method of hydrogeology. Journal of Applied Geophysics, 40: 1-18.




DOI: http://dx.doi.org/10.32693/bomg.34.2.2019.624