Sediment Characteristics of Mergui Basin, Andaman Sea based on Multi-proxy Analyses

Rina Zuraida, Rainer Arief Troa, Marfasran Hendrizan, Luli Gustiantini, Eko Triarso


This paper presents the characteristics of sediment from core BS-36 (6°55.85’ S and 96°7.48’ E, 1147.1 m water depth) that was acquired in the Mergui Basin, Andaman Sea. The analyses involved megascopic description, core scanning by multi-sensor core logger, and carbonate content measurement. The purpose of this study is to determine the physical and chemical characteristics of sediment to infer the depositional environment. The results show that this core can be divided into 5 lithologic units that represent various environmental conditions. The sedimentation of the bottom part, Units V and IV were inferred to be deposited in suboxic to anoxic bottom condition combined with high productivity and low precipitation. Unit III was deposited during high precipitation and oxic condition due to ocean ventilation. In the upper part, Units II and I occurred during higher precipitation, higher carbonate production and suboxic to anoxic condition.
Keywords: sediment characteristics, Mergui Basin, Andaman Sea, suboxic, anoxic, oxic, carbonate content


Makalah ini menyajikan karakteristik sedimen contoh inti BS-36 (6°55,85’ LS dan 96°7,48’ BT, kedalaman 1147,1 m) yang diambil di Cekungan Mergui, Laut Andaman. Metode analisis meliputi pemerian megaskopis contoh inti, pemindaian contoh inti dengan menggunakan multi-sensor core logger, dan pengukuran kandungan karbonat. Tujuan penelitian adalah untuk mengetahui karakteristik fisik dan kimiawi sedimen untuk menafsirkan kondisi lingkungan pengendapan. Hasil penelitian menunjukkan bahwa contoh inti ini dapat dibagi menjadi 5 unit litologi yang mewakili kondisi lingkungan yang berbeda. Pada bagian bawah sedimen, Unit V dan IV ditafsirkan sebagai hasil endapan pada kondisi suboksik hingga anoksik pada saat produktivitas tinggi dan curah hujan rendah. Unit III diendapkan pada saat curah hujan tinggi dan kondisi oksik yang diperkirakan berkaitan dengan ventilasi samudera. Pada bagian atas, Unit II dan I diendapkan pada saat curah hujan cukup tinggi dengan produksi karbonat yang cukup besar dan kondisi dasar laut suboksik hingga anoksik.
Kata kunci: karakteristik sedimen, Cekungan Mergui, Laut Andaman, suboksik, anoksik, oksik, kandungan karbonat



sediment characteristics; Mergui Basin; Andaman Sea; suboxic; anoxic; oxic; carbonate content

Full Text:



Aldrian, E., and Susanto, R.D. 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature, International Journal of Climatology 23, 1435–1452.

Anderson, O.R. 1983. Radiolaria. Springer-Verlag, New York, 355 p.

Awasthi, N. 2012. Geochemical and Isotopic studies of sediments from the Andaman Islands and the Andaman Sea. PhD thesis, M.S. Univ.of Baroda, Vadodara, India.

Awasthi, N., Ray, J.S., Laskar, A.H., Kumar, A., Sudhakar, M., Bhutani, R., Sheth, H.C., and Yadava, M.G. 2010. Major ash eruptions of BarrenIsland volcano (Andaman Sea) during the past 72 kyr: Clues from a sediment core record. Bulletin of Volcanology, 72:1131–1136.

Awasthi, N., Ray, J.S., Singh, A.K., Band, S.T., and Rai, V.K. 2014. Provenance of the Late Quaternary sediments in the Andaman Sea: Implications for monsoon variability and ocean circulation. Geochemistry, Geophysics, Geosystem, 15:3890–3906, doi: 10.1002/2014GC005462.

Balsam, W.L., and Damuth, J.E. 2000. Further Investigations of Shipboard vs Shore-Based Spectral Data: Implications for Interpreting Leg 164 Sediment Composition, in Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.): Proceeding ODP, Scientific Results, 164. College Station, TX (Ocean Drilling Program).

Boles, J.R. 2014. Authigenic minerals in Access Science. McGraw-Hill Education.

Cranston, R.E., and Buckley, D.E. 1990. Redox reactions and carbonate preservation in deep-sea sediments. Marine Geology, 94:1-8.

Crow, M.J. and Barber, A.J. 2005. Simplified geological map of Sumatra. In: Barber, A.J., Crow, M.J., dan Milsom, J.S. (eds.) Sumatra Geology, Resources and Tectonic Evolution. Geological Society Memoir, 31. doi:10.1144/GSL.MEM.2005.031.01.17.

Fairchild, M.D. 2005. Color and Image Appearance Models. Color Appearance Models. John Wiley and Sons. 340 p.

Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T., and Beaufort, L. 2014. Precipitation variability within the West Pacific WarmPool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines. Paleoceanography, 29:1094–1110, doi: 10.1002/2013PA002599.

Guimaraes, J.T.F, Cohen, M.C.L., Franca, M.C., da Silva, A.K.T., and Rodrigues, S.F.S. 2013. Mineralogical and geochemical influences onsediment color of Amazon wetlands analyzed byvisible spectrophotometry. Acta Amazonica, 43:331 – 342.

Gupta, K.S. 1999. Modern Foraminifera. Springer, Dordrecht, 279p.

Gustiantini, L., Maryunani, K.A., Zuraida, R., Kissel, C., Bassinot, F., and Zaim, Y. 2015. Distribusi foraminifera di Laut Halmahera dari glasial akhir sampai resen (foraminiferal distribution since the last glacial until recent in Halmahera Sea), Jurnal Geologi Kelautan, 13(1): 25-36.

Hall., R. and Morley, C. 2004. Sundaland Basin, in Clift, P. D., Wang, P., Kuhnt, W., and Hayes, D. (Eds.), Continent-Ocean Interactions within the East Asian Marginal Seas: Geophysical Monograph 149. Washington, D.C.: American Geophysical Union, 55-85.

Hammer, O., Harper, D.A.T., and Ryan, P.D. 2001. PAST: Paleontological Statistics Software Package foe Education and Data Analysis. Palaeontologia Electronica, 4:9. (http://folk.uio/ohammer/past).

Hemming, S. R., van de Flierdt, T., Goldstein, S.L., Franzese, A.M., Roy, M., Gastineau, G., and Landrot, G. 2007. Strontium isotope tracing of terrigenous sediment dispersal in the Antarctic Circumpolar Current: Implications for constraining frontal positions. Geochemistry, Geophysics, Geosystem, 8:Q06N13, doi:10.1029/2006GC001441.

Hendrizan, M., Zuraida, R., and Cahyarini, S.Y. 2016. Karakteristik Sedimen Palung Laut Sulawesi (Sumur St12) berdasarkan Hasil Pengamatan Megaskopis dan Sifat Fisika dari Pengukuran Multi-Sensor Core Logger (MSCL). Riset Geologi dan Pertambangan, 26: 69-80. doi: 10.14203/risetgeotam2016.v26.273.

Itambi, A.C., von Dobeneck, T., Mulitza, S., Bickert, T., and Heslop, D. 2009. Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal. Paleoceanography, 24: PA1205, doi: 10.1029/2007PA001570.

Kraal, P., Slomp, C. P., Reed, D.C., Reichart, G.-J., and Poulton, S. . 2012. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeoscience, 9:2603–2624, doi:10.5194/bg-9-2603-2012.

Larrasoaña, J.C., Roberts, A.P., and Rohling, E.J. 2008. Magnetic susceptibility of eastern Mediterranean marine sediments as a proxy for Saharan dust supply? Marine Geology, 254:224–229.

Lin, Y. N., Sieh, K., and Stock, J. 2010. Submarine landslides along the Malacca Strait‐Mergui Basin shelf margin: Insights from sequence‐stratigraphic analysis. Journal Geophysical Research, 115:B12102, doi:10.1029/2009JB007050.

Millot, G., 1970. Geology of Clays: Weathering, Sedimentology, Geochemistry. Springer-Verlag Paris, 427 p.

Nielsen, B.M., and Rasmussen, T.M. 2002. Geological correlation of magnetic susceptibility and profiles from Nordre Strømfjord, southern West Greenland. Geology of Greenland Survey Bulletin, 191:48–56.

Permanawati, Y., Prartono, T., Atmadipoera, A.S., Zuraida, R., and Chang, Y. 2016. Rekam sedimen inti untuk memperkirakan perubahan lingkungan di perairan lereng Kangean (core sediment records to predict environmental changes in Kangean slope Waters). Jurnal Geologi Kelautan, 14(2): 65-77.

Rahman, M.A. and Oomori, T. 2008. Structure, crystallization and mineral composition of sclerites in the alcyonarian coral. Journal of Crystal Growth, 310(15): 3528-3534.

Rashid, H., Flower, B.P., Poore, R.Z., and Quinn, T.M. 2007. A ~ 25 ka Indian Ocean monsoon variability record from theAndaman Sea. Quaternary Science Review, 26:2586–2597.

Razali, M. 2011. Play type in the cross border North Sumatra – Mergui Basin. North Sumatra – Mergui Basin Cross Border Case Study EPPM-CCOP, 1-44.

Rebolledo, L., Sepulveda, J., Lange, C.B., Pantoja, S., Bertrand, S., Hughen, K., and Figueroa, D. 2008. Late Holocene marine productivity changes in Northern Patagonia-Chile inferred from a multi-proxy analysis of Jacaf channel sediments. Estuarine, Coastal and Shelf Science, 80:314–322.

Rizal, S., Damm, P., Wahid, M.A., Sundermann, J., Ilhamsyah, Y., Iskandar, T., and Muhammad. 2012. General Circulation in the Malacca Strait and Andaman Sea: a Numerical Model Study. American Journal of Environmental Science, 8:479-488.

Rogerson, M., Weaver, P.E., Rohling, E.J., Lourens, L.J., Murray, J.W., and Hayes, A. 2006. Colour logging as a tool in high-resolution palaeoceanography, in: Rothwell RG. (ed.) New Techniques in Sediment Core Analysis. Geological Society. London: Special Publications, 267:99-112.

Skrede, K. 2012. Magnetic susceptibility of sedimentary rocks from Bjørnøya. Thesis. Norwegian University of Science and Technology. Unpub.

Spooner, M. I., Barrows, T. T., De Deckker, P., and Paterne, M. 2005. Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon. Global Planetary Change, 49:28-46, doi:10.1016/j.gloplacha.2005.05.002.

Sprenk, D., Weber, M.E., Kuhn, G., Wennrich, V., Hartmann, T., and Seelos, K. 2014. Seasonal changes in glacial polynya activity inferred from Weddell Sea varves. Climate of the Past, 10:1239–1251. doi:10.5194/cp-10-1239-2014.

Troa, R.A., Liu, S., Zuraida, R., Triarso, E., Gustiantini, L., and Hendrizan, M. 2014. Cruise Report of BENTHIC Cruis Phase I. Research and Development Center for Marine and Coastal Resources – Ministry of Marine Affairs and Fisheries. 40 p. Unpublished report.

Tripathi, S.K. 2014. Biogenic sediment distribution around south of Central Andaman Trough, Andaman Sea: signatures from micropaleontological studies. Indian Journal of Geoscience, 68:337-346.

Wei, J.H., Finkelstein, D.B., Brigham-Grette, J., Castaneda, I.S., and Nowaczyk, N. 2014. Sediment colour reflectance spectroscopy as a proxy for wet/dry cycles at Lake El’gygytgyn. Far East Russia, during Marine Isotope Stages 8 to 12. Sedimentology, 61:1793-1811.

Weltje, G.J. and Tjallingii, R. 2008. Calibration Of XRF Core Scanners For Quantitative Geochemical Logging Of Sediment Cores: Theory And Application. Earth and Planetary. Science Letter, 274:423–438.

Yao, Z., Liu, Y., Shi, X., and Suk, B.-C. 2012. Paleoenvironmental changes in the East/Japan Sea during the last 48 ka: indications from high-resolution X-ray fluorescence core scanning. Journal of Quaternary Science, 27:932-940.