Characteristics of Boleng Strait Sediments, East Nusa Tenggara, and its Relationship with Current Velocity
Abstract
Islands of Nusa Tenggara are separated by narrow and deep straits resulted from complex tectonic activties. One of the strait is Boleng Strait where tidal current as high as 310 cm/s occurred which might be suitable for an ocean current power plant. Utilization of such resources would need various information of the area, one of them is sediment textures that characterized the seafloor and coastal area and their relationship to current velocity. Grain size analyses were conducted on 12 seafloor sediment samples and 26 coastal sediment samples to identify sediment texture. An additonal 14 seafloor sediment samples with limited volume were observed to determine their sediment types. The result of analysis yielded six types of seafloor sediments: Sand, Gravelly Sand, Sandy Gravel, Silty Sand and Sandy Silt. The sediment grain size is equally influenced by current velocity (r = 0.57) and water depth (r = 0.52) which is reflected by sediment distribution: coarse–grain sediments cover the area near Boleng Strait which has stronger current and fine–grain sediments cover the inner part of the Lewoleba Bay. Plot of six sets of mean grain size and current velocity on Hjulström diagram shows that most of seafloor sediments are on the move and one (SBL. 14) is being eroded. This condition might affect the turbine and thus needs to be taken into consideration when designing the turbine. Grain size analyses on coastal sediment samples show that the mean grain size of coastal sediments ranges between 0.19 mm and 0.62 mm with average value of 0.33 mm that is classified as medium sand. Sand fraction in coastal sediments composes 57% to 100% of the sediments. Observation on mineralogy of the sediments shows abundance of magnetite that concentrates in the fine and medium sand fractions. The presence of magnetite indicate that current–related selective entrainment occurs in the study area. This condition suggests that the coastal area is also strongly affected by ocean current.
Key words: current velocity, sediment grain size, Boleng Strait.
Aktivitas tektonik di Nusa Tenggara Timur menyebabkan terbentuknya batimetri yang kompleks di sekitar kepulauan tersebut yang dicirikan oleh adanya selat sempit dan dalam yang memisahkan pulau–pulau. Salah satu selat tersebut adalah Selat Boleng yang memiliki kecepatan arus terukur maksimum sebesar 310 cm/s yang dapat digunakan sebagai pembangkit energi listrik. Desain turbin arus akan membutuhkan banyak informasi, salah satunya adalah sedimen dasar laut dan pantai serta hubungannya dengan kecepatan arus. Analisis besar butir dilakukan pada 12 sampel sedimen dasar laut dan 26 sampel sedime pantai untuk menentukan jenis sediment. Sebanyak 14 sampel sedimen dasar laut dengan volume terbatas diamati untuk mengetahui jenis sedimen. Hasil analisis menunjukkan bahwa sedimen dasar laut terdiri atas enam jenis: Pasir, Pasir Kerikilan, Kerikil pasiran, Pasir Lanauan dan Lanau Pasiran. Ukuran butir sedimen dipengaruhi oleh kecepatan arus (r = 0.57) dan kedalaman laut (r = 0.52) yang tercermin pada distribusi sedimen: sedimen berukuran kasar menutupi dasar laut di dekat Selat Boleng yang berarus lebih kuat, dan sedimen berukuran halus menutupi dasar laut di bagian dalam Teluk Lewoleba. Plot enam set ukuran butir rata–rata dan kecepatan arus pada diagram Hjulström menunjukkan bahwa hampir seluruh sampel berada dalam kondisi bergerak dan bahkan satu (SBL. 14) sedang mengalami erosi. Kondisi ini akan mempengaruhi turbin sehingga perlu dijadikan pertimbangan saat mendesain turbin. Hasil analisis besar butir pada sedimen pantai menunjukkan bahwa ukuran butir rata–rata sedimen pantau berkisar 0.19 mm dan 0.62 mm dengan nilai rata–rata 0.33 mm yang termasuk dalam fraksi pasir sedang. Fraksi pasir dalam sedimen pantai menyusun 57%–100% sedimen. Pengamatan mineralogi menunjukkan melimpahnya magnetit yang terkonsentrasi pada fraksi pasir halus–sedang. Keberadaan magnetit menunjukkan adanya proses pemisahan yang berkaitan dengan arus laut. Kondisi ini menunjukkan bahwa daerah pantai Selat Boleng juga dipengaruhi oleh arus laut.
Kata Kunci: kecepatan arus, ukuran butir sedimen, Selat Boleng.
Keywords
Full Text:
PDFReferences
Abdurrachman, M., Widiyantoro, S., Priadi, B., Alim, M.Z.A., and Dewangga, A.H. 2015. Proposed New Wadati-Benioff Zone Model in Java-Sumatra Subduction Zone and Its Tectonic Implication. Proceedings of Joint Convention Balikpapan 2015.
Bemmelen, R.W. van. 1949. The Geology of Indonesia, The Hague. Martius Nijhoff.
Boggs, Jr., S. 2006. Principles of Sedimentology and Stratography, 4th edition. Prentice Hall. New Jersey, p. 293.
Folk, R.L., 1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company.
Fraenkel, P.L. 2002. Power from Marine Currents. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216:1-14.
Gordon, A.L. 2005. Oceanography of the Indonesian Seas and their Throughflow. Oceanography, 18:14–27.
Hamilton, W., 1973. Tectonics of the Indonesian Region. Geolological Society of Malaysia Bulletin, 6:3-10.
Hammer, O., Harper, D.A.T., and Ryan, P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4:9. (http://folk.uio/ohammer/past).
Hatfield, R.G., Cioppa, M.T., and Trenhaile, A.S. 2010. Sediment sorting and beach erosion along a coastal foreland: Magnetic measurements in Point Pelee National Park, Ontario, Canada. Sedimentary Geology, 231:63-73.
Heise, B., Bobertz, B., and Harff, J. 2004. A method to correlate granulometrical sediment parameters and hydrographical data. Die Küste, 68:165-186.
Koesoemadinata, S., and Noya, Y. 1990. Geology of the Lomblen Quadrangle, East Nusa Tenggara. Geological Agency, Indonesia.
Komar, P.D., 1998. Beach Processes and Sedimentation. Prentice Hall. New Jersey, 544 p.
Koulali, A., Susilo, S. and McClusky, S., 2016, Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda Arc, Geophys. Res. Lett. 43, 1943-1949, doi:10.1002/2016GL067941.
Kurnio, H., and Aryanto, N.C.D. 2013. The Relationship of Seafloor Surfacial Sediment with Seabottom Morphology of Lemukutan Island Water, West Kalimantan. Bulletin of the Marine Geology, 28:61-69.
Lanuru, M., Samad, W., Amri, K., and Priosambodo, D. 2018. Oceanographic conditions and sediment dynamic of the Barrang Caddi Island (Spermonde Archipelago, Indonesia). IOP Conference Series: Earth and Environmental Science, 157:012040.
Liao, H-R., Yu, H-S., and Su, C-C. 2008. Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan Strait. Marine Geology, 248:161-178.
McCave. I. N., Manighetti. B., and Robinson, S. G. 1995. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanography. 10:593-610.
Muraoka, H., Nasution, A., Simanjuntak, J., Dwipa, S., Takahashi. M., Takahashi, H., Matsuda, K., and Sueyoshi, Y. 2005. Geology and Geothermal Systems in the Bajawa Volcanic Rift Zone. Flores. Eastern Indonesia. Proceedings World Geothermal Congress 2005 Antalya. Turkey. 24-29 April 2005.
Pupienis, D., Buynevich, I.V., and Bitinas, A. 2011. Distribution and significance of heavy-mineral concentrations along the southeast Baltic Sea coast. Journal of Coastal Research, SI 64 (Proceedings of the 11th International Coastal Symposium), 1984-1988.
Rachmat, B., Yuningsih, A., and Astjario, P. 2013. Preliminary Research on Installation of Sea Current Energy for Electricity Turbin from Current and Seafloor Morphology data of Boleng Strait, Eastern Lesser Sunda Islands. Jurnal Geologi Kelautan, 11:17-32 (in Bahasa Indonesia).
Rashedi, S.A., and Siad, A., 2016. Grain Size Analysis And Depositional Environment For Beach Sediments Along Abu Dhabi Coast, United Arab Emirates. International Journal Of Scientific & Technology Research Volume 5, Issue 07, July 2016.
Ren, P., Bornhold, B.D. and Prior, D.B., 1996. Seafloor morphology and sedimentary processes, Knight Inlet, British Columbia. Sedimentary Geology, Volume 103, Issue 3, p. 201-228.
Sampurno, P., Zuraida, R., Nurdin, N., Gustiantini, L., and Aryanto, N.C.D., 2017. Elemental Analysis on Marine Sediments Related to Depositional Environment of Bangka Strait. Bulletin of the Marine Geology, 32:89-96.
Silver, E.A., Reed, D., McCaffrey, R., and Joyodiwiryo, Y. 1983. Back Arc Thrusting in the Eastern Sunda Arc. Indonesia: A Consequence of arc-continent collision. Journal of Geophysical Research, 88:7429-7448.
Sprintall, J., Potemra, J.T., Hautala, S.L., Brayd, N.A., and Pandoe, W.W. 2003. Temperature and salinity variability in the exit passages of the Indonesian Throughflow. Deep-Sea Research II, 50:2183–2204.
Tang, H., and Weiss, R. 2016. Geo-Claw-STRICHE: A coupled model for Sediment Transport In Coastal Hazard Events. Computer and Geosciences, submitted.
Venkatesan, S., Singasubramanian, S.R., and Suganraj, K. 2017. Depositional mechanism of sediments through size analysis from the core of Arasalar river near Karaikkal, east coast of India. Indian Journal of Geo Marine Sciences, 46:2122-2131.
Visher, G. S., 1969. Grain size distribution and depositional processes. Journal of Sedimentary Petrology, 39:1074 -1016.
Weiss, R., and Bahlburg, H. 2006. A Note on the Preservation of Offshore Tsunami Deposits. Journal of Sedimentary Research, 76:1267–127.
Williams, S.J., Arsenault, M.A., Buczkowski, B.J., Reid, J.A., Flocks, J., Kulp, M.A., Penland, S., and Jenkins, C.J. 2006. Surficial sediment character of the Louisiana offshore Continental Shelf region: a GIS Compilation. U.S. Geological Survey Open-File Report 2006-1195. U.S. Geological Survey. Reston, Virginia. 44 p.
Wyrtki K. 1990. Physical Oceanography of the Southeast Asian Waters. Naga Report Vol.2. The University of California La Jolla. California. p. 26.
Ziervogel, K., and Bohling, B. 2003. Sedimentological parameters and erosion behaviour of submarine coastal sediments in the south-western Baltic Sea. Geo-Marine Letters, 23:43-52.
Zuraida, R., Gerhaneu, N.Y., and Sulistyawan, I.H., 2017. Coastal and Surficial Sediment Characterstics on Papel Bay, Rote District, East Nusa Tenggara Province. Jurnal Geologi Kelautan, 15:81-94. (in Bahasa Indonesia).
DOI: http://dx.doi.org/10.32693/bomg.33.1.2018.387