Variabilitas Bulanan Thermal front di Wilayah Pengelolaan Perikanan Republik Indonesia 714 (Laut Banda)
Abstract
Penelitian tentang sebaran spasial thermal front di perairan Indonesia pada dasarnya telah banyak dilakukan. Namun, kajian yang secara khusus menganalisis dinamika thermal front akibat arus sejajar pantai, yang memicu fenomena Ekman pumping, dan arus eddy masih terbatas. Arus sejajar pantai dapat memicu Ekman pumping, sedangkan Ekman pumping dan eddy mesoskal dapat menyebabkan naiknya massa air bersuhu rendah dari lapisan bawah ke permukaan laut. Proses ini memicu pembentukan thermal front, yang banyak ditemukan di Laut Banda. Penelitian ini bertujuan untuk menganalisis variabilitas bulanan dinamika thermal front di Laut Banda yang dipengaruhi oleh arus sejajar pantai dan eddy. Data yang digunakan dalam penelitian ini adalah Suhu Permukaan Laut (SPL) dari tahun 2006 hingga 2020. Hasil penelitian menunjukkan bahwa rata-rata kejadian thermal front yang terdeteksi adalah sebanyak 1.385 kejadian per bulan berdasarkan jumlah piksel, dan 17 kejadian berdasarkan jumlah poligon. Jumlah maksimum kejadian thermal front terjadi pada bulan Desember (2.416 kejadian), dan jumlah minimum terjadi pada bulan November (883 kejadian). Berdasarkan hasil penelitian ditemukan bahwa eddy antisiklonik (AE) dan eddy siklonik (CE), terjadi dengan durasi rata-rata 11,419 hari untuk AE dan 11,812 hari untuk CE. Kedua fenomena ini berkaitan dengan penurunan SPL, peningkatan konsentrasi klorofil-a permukaan laut, serta penurunan tinggi muka laut, yang menunjukkan terjadinya
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ahmad, A. L., Syamsuddin, M. L., Purba, N. P., & Sunarto. (2019). Thermal front condition through El Niño and Indonesian throughflow phase in southern sea of East Java and Bali on the east monsoon. IOP Conference Series: Earth and Environmental Science, 303(1), 012002. https://doi.org/10.1088/1755-1315/303/1/012002
Belkin, I. M. (2021). Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries. Remote Sensing 2021, Vol. 13, Page 883, 13(5), 883. https://doi.org/10.3390/RS13050883
Belkin, I. M., & O’Reilly, J. E. (2009). An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. Journal of Marine Systems, 78(3), 319–326. https://doi.org/10.1016/J.JMARSYS.2008.11.018
Cayula, J.-F., & Cornillon, P. (1992). Edge Detection Algorithm for SST Images. Journal of Atmospheric and Oceanic Technology, 9(1), 67–80. https://doi.org/10.1175/1520-0426(1992)009
Hamzah, R., Prayogo, T., & Harsanugraha, W. K. (2014). Identifikasi thermal front dari data satelit Terra/Aqua MODIS menggunakan metode Single Image Edge Detection (SIED)(Studi kasus: Perairan utara dan selatan Pulau Jawa). Prosiding Seminar Nasional Penginderaan Jauh 2014, 552–559.
Hanintyo, R., Hadianti, S., Mahardhik, R. M. P., Aldino, J. S., & Islamy, F. (2015). Sebaran musiman kejadian thermal front berdasarkan citra Aqua-MODIS di WPPRI 714, 715 dan 716. Prossiding. Seminar Nasional Penginderaan Jauh.
Jatiandana, A. P., & Nurdjaman, S. (2020). Identification of thermal front in Indonesian Waters during 2007–2017. IOP Conference Series: Earth and Environmental Science, 618(1), 12039.
Jatisworo, D., & Murdimanto, A. (2013). Identifikasi thermal front di selat Makassar dan laut banda. Prosiding Simposium Nasional Sains Geoinformasi III.
Jishad, M., & Agarwal, N. (2022). Thermal front Detection Using Satellite-Derived Sea Surface Temperature in the Northern Indian Ocean: Evaluation of Gradient-Based and Histogram-Based Methods. Journal of the Indian Society of Remote Sensing, 50(7), 1291–1299. https://doi.org/10.1007/S12524-022-01527-6/METRICS
Jishad, M., Sarangi, R. K., Ratheesh, S., Ali, S. M., & Sharma, R. (2021). Tracking fishing ground parameters in cloudy region using ocean colour and satellite-derived surface flow estimates: A study in the Bay of Bengal. Journal of Operational Oceanography, 14(1), 59–70. https://doi.org/10.1080/1755876X.2019.1658566
Lukman, A. A., Tarya, A., & Pranowo, W. S. (2022). Surface Thermal front Persistence in Malacca Strait. Jurnal Ilmiah PLATAX, 10(2), 239–250.
Lutjeharms, J. R. E. dan Stockton, P. L. (1987): Kinematics of the upwelling front off southern Africa, South African Journal of Marine Science, 5, 35-49.
Mustasim, M., Zainuddin, M., & Safruddin, S. (2015). Thermal Dan Klorofil-A Front Hubungannya Dengan Hasil Tangkapan Ikan Cakalang Pada Musim Peralihan Barat-Timur Diperairan Seram. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 2(4).
Napitupulu, G. (2024). Monthly variability of wind-induced upwelling and its impact on chlorophyll-a distribution in the Southern and Northern parts of the Indonesian Archipelago. Ocean Dynamics, 74(10), 859-878.
Napitupulu, G. (2025). Eddy-induced modulation of marine heatwaves and cold spells in a tropical region: a case study in the natuna sea area. Ocean Dynamics, 75(3), 28.
Napitupulu, G., Fekranie, N. A., Millina, A. V., Putri, M. R., Kartadikaria, A. R., Setiawan, A., ... & Fajary, F. R. (2025). Seasonal Variability of Surface Heat Transport in the Banda Sea. Thalassas: An International Journal of Marine Sciences, 41(2), 1-20.
Napitupulu, G., Lukman, A. A., Hatmaja, R. B., Kartadikaria, A. R., Radjawane, I. M., Millina, A. V., ... & Napitupulu, M. (2024). Respon Singkat Konsentrasi Klorofil-A Terhadap Perubahan Arus Eddy Permukaan di Wilayah Perairan Teluk Tolo dan Sekitarnya. Jurnal Geologi Kelautan, 22(1).
Panggabean, S., Mubarak, M., & Ghalib, M. (2018). Penentuan Daerah Thermal front Di Laut Timur Su-matera Provinsi Riau. Jurnal Perikanan Dan Kelautan, 23(1), 8–14.
Park, J. E., Park, K. A., Kang, C. K., & Park, Y. J. (2020). Short-Term Response of Chlorophyll-a Concentration to Change in Sea Surface Wind Field over Mesoscale Eddy. Estuaries and Coasts, 43(3), 646–660. https://doi.org/10.1007/S12237-019-00643-W/FIGURES/10
Park, K. A., Cornillon, P., & Codiga, D. L. (2006). Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. Journal of Geophysical Research: Oceans, 111(C3), 3021. https://doi.org/10.1029/2005JC003016
Ramadhan, M. F., Sugianto, D. N., Wirasatriya, A., Setiyono, H., & Maslukah, L. (2020). Characteristics of Halmahera Eddy and its relation to sea surface temperature, chlorophyll-a, and thermocline layer. In IOP Conference Series: Earth and Environmental Science (Vol. 530, No. 1, p. 012039). IOP Publishing.
Rintaka, W. E. (2015). Analisisseasionalsuhupermukaanlaut (SPL), thermal front dan klorofil a terhadapjumlahtangkapan skipjack tuna (Katsuwonus pelamis) di Perairan Utara Maluku-Papua. Seminar Nasional Tahunan XII Hasil Penelitian Perikanan Dan Kelautan.
Rohima Daulay, S., Ersti Yulika Sari, T., Usman, U., Jhonnerie Jurusan Pemanfaatan Sumberdaya Perikanan, R., & Perikanan dan Kelautan Universitas Riau, F. (2019). Characteristics of Thermal front in the Tropical Waters of Eastern Indian Ocean. Jurnal Perikanan Universitas Gadjah Mada, 21(1), 25–29. https://doi.org/10.22146/JFS.39724
Safruddin, Aswar, B., Rijal Ashar, M., Hidayat, R., Dewi, Y. K., Umar, M. T., Farhum, S. A., Mallawa, A., & Zainuddin, M. (2019). The Fishing Ground of Large Pelagic Fish during the Southeast Monsoon in Indonesian Fisheries Management Area-713. IOP Conference Series: Earth and Environmental Science, 370(1), 012045. https://doi.org/10.1088/1755-1315/370/1/012045
Small, R. J., deSzoeke, S. P., Xie, S. P., O’Neill, L., Seo, H., Song, Q., Cornillon, P., Spall, M., & Minobe, S. (2008). Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4), 274–319. https://doi.org/10.1016/J.DYNATMOCE.2008.01.001
Stern, M. E. (1965). Interaction of a uniform wind stress with a geostrophic vortex. Deep Sea Research and Oceanographic Abstracts, 12(3), 355–367. https://doi.org/10.1016/0011-7471(65)90007-0
Suhadha, A. G., & Ibrahim, A. (2020). Association Study Between Thermal Front Phenomena and Bali Sardinella Fishing Areas in Bali Strait. Indonesian Journal of Geography, 52(2), 154–162. https://doi.org/10.22146/IJG.51668
Trinugroho, T., Satriadi, A., & Muslim, M. (2019). Sebaran thermal front musiman di wilayah perairan Selat Madura menggunakan single image edge detection. Journal of Marine Research, 8(4), 416–423.
Vinayachandran, P. N. M., Masumoto, Y., Roberts, M. J., Huggett, J. A., Halo, I., Chatterjee, A., Amol, P., Gupta, G. V. M., Singh, A., Mukherjee, A., Prakash, S., Beckley, L. E., Raes, E. J., & Hood, R. (2021). Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences, 18(22), 5967–6029. https://doi.org/10.5194/BG-18-5967-2021
Wang, G., Li, J., Wang, C., & Yan, Y. (2012). Interactions among the winter monsoon, ocean eddy and ocean thermal front in the South China Sea. Journal of Geophysical Research: Oceans, 117(C8).
Ye, H., Kalhoro, M. A., Morozov, E., Tang, D., Wang, S., & Thies, P. R. (2018). Increased chlorophyll-a concentration in the South China Sea caused by occasional sea surface temperature fronts at peripheries of eddies. International Journal of Remote Sensing, 39(13), 4360-4375.
Yudowaty, S.O., Radjawane, I.M., Fajary, F.R., Napitupulu, G. (2025). Heat Transport Variability within The Inlet and Outlet of Makassar Strait. Malaysian Applied Geography (MAGG), 3(1): 38-44.
Zhao, D., Xu, Y., Zhang, X., & Huang, C. (2021). Global chlorophyll distribution induced by mesoscale eddies. Remote Sensing of Environment, 254, 112245. https://doi.org/10.1016/J.RSE.2020.112245
DOI: http://dx.doi.org/10.32693/jgk.23.1.2025.897
Refbacks
- There are currently no refbacks.