KARAKTERISTIK ENDAPAN KUARTER DAN KEBERADAAN AIR TANAH BERDASARKAN PENAFSIRAN DATA GEORADAR DI PESISIR PANTAI BARAT DAYA PULAU ROTE

Muhammad Zulfikar, Fauzi Budi Prasetio, Undang Hernawan


Abstract


Pulau Rote merupakan pulau bagian selatan wilayah Indonesia yang terbentuk akibat adanya kolisi antara dua lempeng benua antara Australia – Asia, sehingga terjadi pengangkatan yang membentuk daratan hingga saat ini. Formasi batuan yang tersingkap di permukaan bagian timur - selatan Pulau Rote tersusun atas endapan-endapan Kuarter dan Formasi Batuan berumur Kuarter yang terdiri dari Endapan Aluvium dan Endapan Pantai (Qa), Endapan Konglomerat (Qac), Batugamping Koral (Ql), Formasi Noele (Qtn). Tujuan penelitian ini adalah untuk memberikan gambaran kondisi endapan kuarter bawah permukaan dan kemunginan keberadaan air tanah. Survei ini menggunakan peralatan Ground Peneterating Radar (GPR) tipe Sirveyor 20, antenna (MLF) frekuensi 40 MHz dan software Radan 5 untuk pemrosesan data. Hasil identifikasi fasies radar menunjukkan bahwa kondisi geologi di bawah permukaan pada kedalaman 15 – 30 meter merupakan batupasir yang dapat disebandingkan dengan Formasi Noele (Qtn). Pada kedalaman 2-15 meter merupakan lapisan yang tersusun atas batugamping bioklastik (batugamping koral) yang dapat disebandingkan dengan Batugamping Koral berumur Kuarter (Ql). Pada kedalaman 0-1 meter merupakan endapan pantai berumur Holosen yang dapat disebandingkan dengan Endapan Alluvium dan Endapan Pantai (Qa). Keberadaan air tanah diperkirakan berada pada lapisan Batugamping Koral dengan kedalaman sekitar 12-15 meter.

Kata kunci: Georadar, GPR, endapan Kuarter, Pulau Rote, fasies radar


Rote Island is the southern part of Indonesia which was formed by two continental plates collision between Australia and Asia plates, so that there will be an uplift that forms the land until now. The Quaternary rock units are well exposed in the east-south part of Rote Island, which are composed of Alluvium and Coastal Deposits (Qa), Conglomerate Deposits (Qac), Coral Limestone (Ql), and Noele Formation (Qtn). This study provides lithological characteristics of quaternary deposit and possibility of ground water presence by using georadar data interpretation. This survey using Sirveyor 20 GPR equipment type with MLF antenna frequency 40 Mhz and Radan 5 as processing software. Result of radar facies identification showed geological condition at 15-30 depth was sandstone that can be compared to the Noele Formation (Qtn). At 2-15 meter depth is a layer composed of bioclastic limestone (coral limestone) which can be compared to Quaternary coral limestone (Ql). At 0-1 meter depth is Holocene deposit that can be compared to Alluvium and Coastal Deposit (Qa). The presence of ground water is estimated to be in the coral limestone layer at 12-15 meter depth.

Keywords: Georadar, GPR, Quaternary deposit, Rote Island, radar facies


Keywords


georadar; GPR; Endapan Kuarter; Rote

Full Text:

PDF

References


Allen, R.L., 1979. Studies In Fluviatile Sedimentation: Anelementary Geometric Model For The Connectedness Of Avulsion-Related Channel Sand Bodies. Sedimentary Geology, 24, h.253-267.

Beres Jr. M., & Haeni., F.P., 1991. Application of Ground Penetrating Radar Methods in Hydrogeologic Studies. Ground Water, 29 (3), h.375-386.

Budiono, K., 2013. The characteristic of coastal subsurface quartenary sediment based on Ground Probing Radar (GPR) interpretation and core drilling result of Anyer coast, Banten province. Bulletin of the Marine Geology, 28 (2), h.83-93.

Budiono, K., 2013. The image of subsurface tertiary – quartenary deposit based on Ground Penetrating Radar records of Subi Kecil Island coast, Natuna District, Riau Archipelago province. Bulletin of the Marine Geology, 28 (1), h.31-41.

Budiono, K., Noviadi, Y., Latuputty, G., & Hernawan U., 2012. Investigation of Ground Penetrating Radar for Detection od Road Subsidence Northcoast of Jakarta, Indonesia. Bulletin of the Marine Geologi, 27 (2), h.87-97.

Budiono, K., Handoko, Hernawan, U., & Godwin, 2010. Penafsiran Struktur Geologi Bawah Permukaan di Kawasan Semburan Lumpur Sidoarjo, Berdasarkan Penampang Ground Penetrating Radar (GPR). Jurnal Geologi Indonesia, 5 (3), h.187-195.

Budiono, K & Latuputty, G., 2008. Subsurface geological condition of several land coastal zone in Indonesia based on the GSSI Ground Probing Radar (GPR) record interpretation. Bulletin of the marine geology, 23 (1), h.9-17

Carrivick, J.L., 2007. GPR-Derived Sedimentary Architecture and Stratigraphy of Outburst Flood Sedimentation Within a Bedrock Valley System, Hraundalur, Iceland. Journal of Environmental and Engineering Geophysics, 12 (1), h.127-143.

Costas, S., Alfjo, I., Rial, F., Lorenzo, H. and Nombela, M. A., 2006. Cyclical Evolution of a modern transgressive sand barrier in Northwestern Spain elucidated by GPR and aerial photos : J. Sediment. Res. 76 1077–1092.

Elfarabi, Widodo, A., & Syaifudin, F., 2017. Pemetaan bawah permukaan pada daerah Tanggulangin, Sidoarjo dengan menggunakan metode Ground Penetrating Radar (GPR). Jurnal Geosaintek, 3 (1), h.45-50.

Jatmiko, F. A. W., Mandang, I., & Budiono, K., 2016. Interpretasi sedimen bawah permukaan tanah dengan menggunakan metode GPR (Ground Penetrating Radar) di daerah pantai Kulon Progo Daerah Istimewa Yogyakarta. Prosiding seminar sains dan teknologi FMIPA Unmul, 1 (1), h.13-17.

Moysey, S., Rosemary, J. K., & Hary, M., 2006. Texture – based on classification of ground-penetrating radar images. Geophysics, 71, h.k111-k118

Noviadi, Y., 2014. Characteristic of shallow subsurface lithologi based on Ground Probing radar data interpretation at Temaju coast, Sambas distric, West Kalimantan province. Bulletin of the Marine Geologi, 29 (2), h.61-70.

Peterson, C.D. & Soliber, S.R., 2019. Groundwater Surface (GWS) Mapping by Ground Penetrating Radar (GPR) For Use in Protecting Freshwater Habitats, Water Quality, and Active Dune Landscapes, In the Florence Coastal Dune Sheet, Oregon, USA. Portland, United States : Journal of Geography and Geology; Vol. 11, No. 1; 2019.

Raharjo, P., Yosi, M., 2017. The identification of land subsidence by levelling measurement and GPR data at Tanjung Emas harbour, Semarang. Bulletin of the Marine Geology, 31 (1), h.41-50.

Rosidi, H. M. D., Tjokrosapoetro, S. & Gafoer, S., 2012. Peta Geologi Lembar Kupang-Atambua, Timor, Skala 1:250.000, Pusat Penelitian dan Pengembangan Geologi (P3G), Bandung.

Shukla, Patidar & Nilesh Bhatt, 2008. Application of GPR in the Study of Shallow Subsurface Sedimentary Architecture of Modwa spit, Gulf of Kachchh. Vadodara, India : Journal of Earth System Science.

Shofyan, M. S., Hilyah, A., & Pandu, G. N. R. J., 2016. Penerapan metode very low frequency electromagnet (VLF-EM) untuk mendeteksi rekahan pada daerah Tanggulangin, Sidoarjo. Jurnal Geosaintek, 02 (02), h.129-134.

Somantri, A. P., Arya, P., & Iryanti, M., 2016. Aplikasi metode Ground Probing Radar terhadap pola retakan di bendungan Batu Tegi Lampung. Wahana Fisika, 1 (1), h.32-41.

Sjoberg, Y., Marklund, P., Pettersson, R., & Lyon, S. W., 2015. Geophysical Mapping of Palsa Peatland Permafrost. The Cryosphere, 9, h.465-478.

van Dam, R.L. & Schlager, W., 2000. Identifying Causes of Ground Penetrating Radar Reflection Using Time-Domain Reflectometry and Sedimentological Analyses. Sedimentology, 47, h.435-449.

van Heteren, S., Fitzgerald, D. M., Mckinlay, P. A., & Buynevich, I.V., 1998. Radar fasies of paraglacial barrier systems: coastal New England, USA. Sedimentology, 45, h.181-200.

Yulius, M. Y., Wahyu, Y., & Oktafiani, F., 2008. Studi Pemrosesan dan Visualisasi Data Ground Penetrating Radar. Jurnal Informatika LIPI, 2 (1), h.1-6.




DOI: http://dx.doi.org/10.32693/jgk.18.2.2020.619

Refbacks

  • There are currently no refbacks.



Terakreditasi oleh: Direktorat Jenderal Penguatan Riset dan Pengembangan, Kemenristek Dikti