ZOOPLANKTON DISTRIBUTION FROM BACKSCATTER DATA OF ADCP INSTRUMENT IN WEST SUMATRA WATERS

Gandhi Napitupulu, Rizqi Ayu Farihah, Henry Munandar Manik, Oktavira Dwi Demia Larasati, Moses Napitupulu, Lamona Irmudyawati Bernawis, Ivonne Milichristi Radjawane, Edi Kusmanto


Abstract


Acoustic Doppler Current Profiler (ADCP) conventionally used to monitor ocean current profiles and potentially detect zooplankton distribution remains largely unexplored. Zooplankton are key consumers in the marine food chain, therefore understanding their distribution is critical. This study aims to map the distribution of zooplankton in West Sumatra waters using ADCP backscatter data. Data analyzed encompass ocean current measurements, backscatter, and conductivity-temperature-depth (CTD) profiles collected from March 1 to 3, 2017. Raw ADCP digital counts were converted into mean volume backscattering strength (MVBS) in dB using sonar equations, proportional to zooplankton biomass. The conversion process involved corrections for sound attenuation due to distance and water absorption, ADCP transducer angle correction, and noise correction. Processing results revealed zooplankton distribution in raw ADCP data ranging from 20 to 160 counts and in MVBS data spanning -140 dB to -40 dB. MVBS values derived from ADCP acoustic signal processing were filtered within the -100 dB to -60 dB range, representing the zooplankton backscatter range. Zooplankton distribution was observed at depths of 0-300 m. Vertical zooplankton distribution was generally high in the 100-200 m layer and decreased at 0-100 m and 200-300 m. This is attributed to the influence of the Equatorial Undercurrent transporting zooplankton biomass from the Indian Ocean to West Sumatra waters at depths of 100-200 m, characterized by high salinity (34.6-35.2 PSU) and cold temperatures (19°-21°C). This study demonstrates the utility of ADCP in observing zooplankton distribution based on their backscatter values and the influence of ocean currents in transporting zooplankton biomass.


Keywords


ADCP, backscatters, detection of zooplankton distribution, West Sumatra

Full Text:

PDF

References


Ainslie, M. A., and McColm, J. G., 1998. A simplified formula for viscous and chemical absorption in sea water. The Journal of the Acoustical Society of America, 103(3), 1671–1672. https://doi.org/10.1121/1.421258

Austin, J. A., Hrabik, T. R., and Branstrator, D., 2022. An abrupt decline in springtime zooplankton diel vertical migration due to a shift in stratification regime. Journal of Great Lakes Research, 48(3), 837-842.

Bakhtiyar, Y., Arafat, M. Y., Andrabi, S., and Tak, H. I., 2020. Zooplankton: The Significant Ecosystem Service Provider in Aquatic Environment. Bioremediation and Biotechnology, Vol 3: Persistent and Recalcitrant Toxic Substances, 3, 227–244. https://doi.org/10.1007/978-3-030-46075-4_10/COVER

Bezerra-Neto, J. F., Brighenti, L. S., and Pinto-Coelho, R. M., 2013. Implementation of hydroacoustic for a rapid assessment of fish spatial distribution at a Brazilian Lake-Lagoa Santa, MG. Acta Limnologica Brasiliensia, 25, 91-98.

Cheng, X. W., Zhang, L. L., Gao, F., Tan, Y. H., Xiang, R., Qiu, Z. Y., and He, L. J., 2022. Biodiversity of zooplankton in 0–3000 ​m waters from the eastern Indian Ocean in spring 2019 based on metabarcoding. Water Biology and Security, 1(1), 100005. https://doi.org/10.1016/J.WATBS.2022.100005

Chun, S., La, H. S., Son, W., Kim, Y. C., Cho, K. H., and Yang, E. J., 2022. Detection method for diel vertical migration pattern using 2D cross-correlation with ADCP backscatter time-series data. Methods in Ecology and Evolution, 13(7), 1475–1487. https://doi.org/10.1111/2041-210X.13871

Cisewski, B., Strass, V. H., Rhein, M., and Krägefsky, S., 2010. Seasonal variation of diel vertical migration of zooplankton from ADCP backscatter time series data in the Lazarev Sea, Antarctica. Deep Sea Research Part I: Oceanographic Research Papers, 57(1), 78–94. https://doi.org/10.1016/J.DSR.2009.10.005

Cisewski, B., and Strass, V. H., 2016. Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea. Progress in Oceanography, 144, 62–92. https://doi.org/10.1016/J.POCEAN.2016.03.005

Deines, K. L., 1999. Backscatter estimation using broadband acoustic Doppler current profilers. Proceedings of the IEEE Working Conference on Current Measurement, 249–253. https://doi.org/10.1109/CCM.1999.755249

Dwinovantyo, A., Manik, H. M., Prartono, T., and Susilohadi., 2018. Application of Acoustic Doppler Current Profiler (ADCP) to Observe Diel Vertical Migration of Zooplankton. Journal of Physics: Conference Series, 1075(1), 012016. https://doi.org/10.1088/1742-6596/1075/1/012016

Espinasse, B., Pagano, M., Basedow, S. L., Chevalier, C., Malengros, D., and Carlotti, F., 2023. Water column distribution of zooplanktonic size classes derived from in-situ plankton profilers: Potential use to contextualize contaminant loads in plankton. Marine Pollution Bulletin, 196, 115573. https://doi.org/10.1016/J.MARPOLBUL.2023.115573

Flagg, C. N., and Smith, S. L., 1989. On the use of the acoustic Doppler current profiler to measure zooplankton abundance. Deep Sea Research Part A. Oceanographic Research Papers, 36(3), 455-474.

Gartner, J. W., 2004. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Marine Geology, 211(3-4), 169-187.

Guerra, D., Schroeder, K., Borghini, M., Camatti, E., Pansera, M., Schroeder, A., Sparnocchia, S., and Chiggiato, J., 2019. Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler. Ocean Science, 15(3), 631–649. https://doi.org/10.5194/OS-15-631-2019

Hays, G. C., 2017. Ocean currents and marine life. Current Biology, 27(11), R470–R473. https://doi.org/10.1016/j.cub.2017.01.044

Heywood, K. J., Scrope-Howe, S., and Barton, E. D., 1991. Estimation of zooplankton abundance from shipborne ADCP backscatter. Deep Sea Research Part A. Oceanographic Research Papers, 38(6), 677–691. https://doi.org/10.1016/0198-0149(91)90006-2

Holliday, D. V., Pieper, R. E., and Kleppel, G. S., 1989. Determination of zooplankton size and distribution with multifrequency acoustic technology. ICES Journal of Marine Science, 46(1), 52–61. https://doi.org/10.1093/ICESJMS/46.1.52

Kang, M., Furusawa, M., and Miyashita, K., 2002. Effective and accurate use of difference in mean volume backscattering strength to identify fish and plankton. ICES Journal of Marine Science, 59(4), 794–804. https://doi.org/10.1006/JMSC.2002.1229

Kim, E., Mukai, T., and Iida, K., 2016. Acoustic identification of krill and copepods using frequency differences of volume backscattering strength around Funka Bay, Hokkaido, Japan. Nippon Suisan Gakkaishi (Japanese Edition), 82(4), 587–600. https://doi.org/10.2331/SUISAN.15-00039

Knauss, J. A., and Taft, B. A., 1964. Equatorial Undercurrent of the Indian Ocean. Science (New York, N.Y.), 143(3604), 354–356. https://doi.org/10.1126/SCIENCE.143.3604.354

Kusmanto, E., and Siswanto, S., 2019. Analisis Masa Air Dan Estimasi Transport Arus Bawah Ekuator Pada Bujur 90°E Selama Indonesia Prima 2017. Jurnal Meteorologi Dan Geofisika, 19(2), 59. https://doi.org/10.31172/JMG.V19I2.522

La, H. S., Ha, H. K., Kang, C. Y., Wåhlin, A. K., and Shin, H. C., 2015. Acoustic backscatter observations with implications for seasonal and vertical migrations of zooplankton and nekton in the Amundsen shelf (Antarctica). Estuarine, Coastal and Shelf Science, 152, 124–133. https://doi.org/10.1016/J.ECSS.2014.11.020

Lawson, G. L., Wiebe, P. H., Ashjian, C. J., Gallager, S. M., Davis, C. S., and Warren, J. D., 2004. Acoustically-inferred zooplankton distribution in relation to hydrography west of the Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography, 51(17–19), 2041–2072. https://doi.org/10.1016/J.DSR2.2004.07.022

Lee, K., Mukai, T., Lee, D., and Iida, K., 2008. Verification of mean volume backscattering strength obtained from acoustic Doppler current profiler by using sound scattering layer. Fisheries Science, 74(2), 221–229. https://doi.org/10.1111/J.1444-2906.2008.01516.X/METRICS

Lee, K., Mukai, T., Lee, D. J., and Iida, K., 2014. Classification of sound-scattering layers using swimming speed estimated by acoustic Doppler current profiler. Fisheries Science, 80(1), 1–11. https://doi.org/10.1007/S12562-013-0683-9/FIGURES/7

Lomartire, S., Marques, J. C., and Gonçalves, A. M. M., 2021. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecological Indicators, 129, 107867. https://doi.org/10.1016/J.ECOLIND.2021.107867

Lyons, A. B., and Parish, C. R., 1994. Determination of lymphocyte division by flow cytometry. Journal of Immunological Methods, 171(1), 131–137. https://doi.org/10.1016/0022-1759(94)90236-4

Mackenzie, K. V., 1981. Nine‐term equation for sound speed in the oceans. The Journal of the Acoustical Society of America, 70(3), 807–812. https://doi.org/10.1121/1.386920

Manik, H. M., 2015. Acoustic Observation of Zooplankton Using High Frequency Sonar (Observasi Akustik Zooplankton Menggunakan Sonar Frekuensi Tinggi). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 20(2), 61–72. https://doi.org/10.14710/IK.IJMS.20.2.61-72

Manik, H. M., and Firdaus, R., 2021. Quantifying suspended sediment using acoustic doppler current profiler in Tidung island seawaters. Pertanika Journal of Science and Technology, 29(1), 363–385. https://doi.org/10.47836/PJST.29.1.21

Manso-Narvarte, I., Fredj, E., Jordà, G., Berta, M., Griffa, A., Caballero, A., and Rubio, A., 2020. 3D reconstruction of ocean velocity from high-frequency radar and acoustic Doppler current profiler: A model-based assessment study. Ocean Science, 16(3), 575–591. https://doi.org/10.5194/OS-16-575-2020

Mohn, C., Denda, A., Christiansen, S., Kaufmann, M., Peine, F., Springer, B., Turnewitsch, R., and Christiansen, B., 2018. Ocean currents and acoustic backscatter data from shipboard ADCP measurements at three North Atlantic seamounts between 2004 and 2015. Data in Brief, 17, 237–245. https://doi.org/10.1016/J.DIB.2018.01.014

Mullison, J. W., 2017. Backscatter estimation using broadband acoustic doppler current profilers-updated. Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference, Durham, NH, USA, 9–12.

Mullison, J. W., 2019. Backscatter Estimation Using ADCPs - Twenty Years Later. 2019 IEEE/OES 12th Current, Waves and Turbulence Measurement, CWTM 2019. https://doi.org/10.1109/CWTM43797.2019.8955274

Nava, V., and Leoni, B., 2021. A critical review of interactions between microplastics, microalgae and aquatic ecosystem function. Water Research, 188, 116476. https://doi.org/10.1016/J.WATRES.2020.116476

Potiris, E., Frangoulis, C., Kalampokis, A., Ntoumas, M., Pettas, M., Petihakis, G., and Zervakis, V., 2018. Acoustic Doppler current profiler observations of migration patternsof zooplankton in the Cretan Sea. Ocean Science, 14(4), 783–800. https://doi.org/10.5194/OS-14-783-2018

RDI., 1990. Calculating absolute backscatter. RD Instruments Technical Bulletin ADCP-90-04, 24pp.

Receveur, A., Kestenare, E., Allain, V., Ménard, F., Cravatte, S., Lebourges-Dhaussy, A., Lehodey, P., Mangeas, M., Smith, N., Radenac, M. H., and Menkes, C., 2020. Micronekton distribution in the southwest Pacific (New Caledonia) inferred from shipboard-ADCP backscatter data. Deep Sea Research Part I: Oceanographic Research Papers, 159, 103237. https://doi.org/10.1016/J.DSR.2020.103237

Schiano, E., Pensieri, S., Bozzano, R., and Picco, P., 2013. Analysis of long time series of ADCP backscatter data in the Ligurian Sea to investigate the zooplankton variability. OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension. https://doi.org/10.1109/OCEANS-BERGEN.2013.6608040

Simmonds, J., and MacLennan, D., 2008. Fisheries acoustics: Theory and practice: Second edition. Fisheries Acoustics: Theory and Practice: Second Edition, 1–252. https://doi.org/10.1002/9780470995303

Singh, V. K., and Roxy, M. K., 2022. A review of ocean-atmosphere interactions during tropical cyclones in the north Indian Ocean. Earth-Science Reviews, 226, 103967. https://doi.org/10.1016/J.EARSCIREV.2022.103967

Song, Y., Yang, J., Wang, C., and Sun, D., 2022. Spatial patterns and environmental associations of deep scattering layers in the northwestern subtropical Pacific Ocean. Acta Oceanologica Sinica, 41(7), 139–152. https://doi.org/10.1007/S13131-021-1973-1/METRICS

Sprintall, J., Gordon, A. L., Murtugudde, R., and Susanto, R. D., 2000. A semiannual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. Journal of Geophysical Research: Oceans, 105(C7), 17217–17230. https://doi.org/10.1029/2000JC900065

Szczucka, J., Trudnowska, E., Hoppe, L., and Błachowiak-Samołyk, K., 2016. Comparison of acoustical and optical zooplankton measurements using an acoustic scattering model: A case study from the Arctic frontal zone. Polish Polar Research, 37(1), 67–88. https://doi.org/10.1515/POPORE-2016-0008

Thoman, T. X., Kukulka, T., Cohen, J. H., and Boettcher, H., 2023. Zooplankton-microplastic exposure in Delaware coastal waters: Atlantic blue crab (Callinectes sapidus) larvae case study. Marine Pollution Bulletin, 196, 115541. https://doi.org/10.1016/J.MARPOLBUL.2023.115541

Urick, R. J., 1984. Ambient noise in the sea. Undersea Warfare Technology Office, Naval Sea Systems Command, Department of the Navy.

Vogel, M., Silveira, I. C. A., Castro, B. M., Lima, J. A. M., Pereira, A. F., and Williams, P., 2010. Metocean Measurements at Northern Santos Basin - Brazil. Proceedings of the Annual Offshore Technology Conference, 4, 2967–2978. https://doi.org/10.4043/20947-MS

Wang, Z., DiMarco, S. F., Ingle, S., Belabbassi, L., and Al-Kharusi, L. H., 2014. Seasonal and annual variability of vertically migrating scattering layers in the northern Arabian Sea. Deep Sea Research Part I: Oceanographic Research Papers, 90(1), 152–165. https://doi.org/10.1016/J.DSR.2014.05.008

Woodgate, R. A., and Holroyd, A. E., 2011. Correction of Teledyne Acoustic Doppler Current Profiler (ADCP) bottom-track range measurements for instrument pitch and roll. arXiv preprint arXiv:1110.5003.

Wormuth, J. H., Ressler, P. H., Cady, R. B., Harris, E. J., Ressler, P. H., Cady, R. B., and Harris, E. J., 2000. Zooplankton and Micronekton in Cyclones and Anticyclones in the Northeast Gulf of Mexico. Gulf of Mexico Science, 18(1), 3. https://doi.org/10.18785/goms.1801.03

Xie, C., Ding, R., Xuan, J., and Huang, D., 2023. Interannual variations in salt flux at 80°E section of the equatorial Indian Ocean. Science China Earth Sciences, 66(9), 2142–2161. https://doi.org/10.1007/S11430-022-1140-X/METRICS

Zhang, L., Zhou, W., and Jiao, L., 2004. Wavelet Support Vector Machine. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 34–39. https://doi.org/10.1109/TSMCB.2003.811113




DOI: http://dx.doi.org/10.32693/bomg.39.2.2024.871


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: