GEOLOGICAL INTERPRETATION OF 2D GRAVITY MODELING IN TULUNG SELAPAN AREA AND SURROUNDINGS, SOUTH SUMATRA BASIN

Eddy Mirnanda, Vera Sarah Simatupang, Harkins Prabowo


Abstract


The South Sumatra Basin is a prolific oil and gas basin. The Tulung Selapan area, which is to the east and part of the South Sumatra Basin, is considered to have hydrocarbon potential. Several sub-basins, including the South Palembang and the North Palembang sub-basins, exist in the region. One of the geophysical methods for determining the presence of sedimentary sub-basins, structural patterns, and bedrock is the gravity method. The purpose of this study is to determine the structural pattern and interpret the subsurface geological model of the Tulung Selapan area using 2D modeling. The complete Bouguer anomaly (CBA) reveals circular and relatively northwest-southeast trending patterns, ranging from +33 mGal to +62 mGal. 2D gravity forward modeling results in eight successive rock layers. From top to bottom, the uppermost layer is swamp sediment with a mass density of 2.1 g/cm3, followed successively by the sedimentary rocks of the Kasai Formation (2.28 g/cm3), the Muara Enim Formation (2.32 g/cm3), the Air Benakat Formation (2.39 g/cm3), the Gumai Formation (2.3 g/cm3), the Baturaja Formation (2.48 g/cm3), and lastly a layer with a density of 2.7 g/cm3, which represents the bedrock. Due to the limited depth of 2800 m in 2D forward modeling, it is unable to identify the source and reservoir rocks. The seal rock (caprock) is interpreted to be shale from the Gumai Formation at an average depth of 1.53 km. Based on Second Vertical Derivative (SVD) analysis, 2D modeling identifies the presence of geological structures with normal faults.


Keywords


Gravity, Second Vertical Derivative (SVD), 2D Modeling, Tulung Selapan, South Sumatra Basin

Full Text:

PDF

References


Bishop, M.G., 2000. South Sumatera Basin Province, Indonesia: The Lahat/Talang Akar - Cenozoic total petroleum system. USGS Open File Report 99-50S.

Blakely, R.J., 1996. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, 464 pp. ISBN: 9780521575478, 0521575478.

Courteney, S., Cockcroft, P., Lorentz, R., Miller, R., Ott, H.L., Prijosoesilo, P., Suhendan, A.R. and Wight, A.W.R., 1990. Indonesia - Oil and Gas Fields Atlas, Vol. III: South Sumatera. Scale not given. Indonesian Petroleum Association Professional Division.

De Coster, G.L., 1974. The geology of the Central and South Sumatera Basins: Proceedings Indonesian Petroleum Association 3nd Annual Convention: 77-110.

Elkins, T.A. 1951. The second derivative method of gravity interpretation, Geophysics, 16(1): 29-50. DOI: 10.1190/1.1437648.

Grandis, H., 2009. Pengantar Pemodelan Inversi Geofisika. Himpunan Ahli Geofisika Indonesia (HAGI), Jakarta, 186 pp. ISBN: 978-979-98933-3-8.

Hutchison, C.S., 1996. South-East Asian Oil, Gas, Coal and Mineral Deposits. Oxford Monographs on Geology and Geophysics. Oxford University Press, New York, Oxford. 36: xv + 265 pp.

Karunianto, A.J., Haryanto, D., Hikmatullah, F. and Laesanpura, A., 2017. Penentuan anomali gayaberat regional dan residual menggunakan filter Gaussian, Daerah Mamuju, Sulawesi Barat. Eksplorium, 38(2):89-98. DOI: 10.17146/eksplorium.2017.38.2.3921.

Mangga, S.A., Sukardi and Sidarto, 1993. Peta Geologi Lembar Tulung Selapan, Sumatera (Geological Map of the Tulung Selapan Quadrangle, Sumatera). Scale 1:250,000. Pusat Penelitian dan Pengembangan Geologi.

Panggabean, H. and Santy, L.D., 2012. Sejarah penimbunan Cekungan Sumatera Selatan dan implikasinya terhadap waktu generasi hidrokarbon. Jurnal Sumber Daya Geologi, 22(4): 225-235.

Rosid, M.S. and Siregar, H., 2017. Determining fault structure using first horizontal derivative (FHD) and horizontal vertical diagonal maxima (HVDM) method: A comparative study. AIP Conference Proceedings, 1862: 030171. DOI: 10.1063/1.4991275.

Reynolds, J.M., 1997. An introduction to applied and environmental geophysics. John Wiley, Michigan, 796 pp.

Sekretariat DEN, 2019. Indonesia Energy Outlook 2019. Secretariat General of National Energy Council (DEN), Jakarta, 94 pp.

Setiadi, I., Setyanta, B. and Widijono, B.S., 2010. Delineasi cekungan sedimen Sumatra Selatan berdasarkan analisis data gaya berat. Jurnal Sumber Daya Geologi, 20(2): 93-106.

Setiadi, I., Diyanti, A. and Nanang, A.D., 2014. Interpretasi struktur geologi bawah permukaan daerah Leuwidamar berdasarkan analisis spektral data gaya berat. Jurnal Geologi dan Sumberdaya Mineral. 15(4): 205-214.

Suhendan, A.R., 1984. Middle Neogene depositional environments in Rambutan area, South Sumatra. Proceedings Indonesian Petroleum Association 13th Annual Convention: 63-73.

Sosrowidjojo, I.B., Setiardja, B., Zakaria, Kralert, P.G., Alexander, R. and Kagi, R.I., 1994. A new geochemical method for assessing the maturity of petroleum: Application to the South Sumatra basin. Proceedings Indonesian Petroleum Association 23rd Annual Convention: 439-455.

Sudarmono, T., Suherman and Eza, B., 1997. Paleogene basin development in Sundaland and it’s role to the petroleum systems in Western Indonesia. Proceedings Indonesian Petroleum Association, International Conference on Petroleum Systems of SE Asia and Australasia: 545-560.

Tarsis, A.D., 2001. Penyelidikan batubara bersistim dalam Cekungan Sumatera Selatan di daerah Benakat Minyak dan sekitarnya, Kabupaten Muara Enim Propinsi Sumatera Selatan. Sub Direktorat Batubara, Direktorat Inventarisasi Mineral, Departemen Energi dan Sumber Daya Mineral, 10 pp.

Wahyudin and Subekti, A.D., 1999. Pengkajian cekungan gambut di daerah Tulung Selapan, Kabupaten Ogan Komering Ilir, Propinsi Sumatera Selatan. Pemaparan Hasil Kegiatan Lapangan DIK-S Batubara. Sub Direktorat Eksplorasi Batubara dan Gambut, Direktorat Sumberdaya Mineral, Departemen Pertambangan dan Energi: 10-1–10-3.




DOI: http://dx.doi.org/10.32693/bomg.37.2.2022.796


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: