RESPON SINGKAT KONSENTRASI KLOROFIL-A TERHADAP PERUBAHAN ARUS EDDY PERMUKAAN DI WILAYAH PERAIRAN TELUK TOLO DAN SEKITARNYA
Abstract
Upwelling, sebuah proses oseanografi yang sangat penting, memperkaya air permukaan dengan massa air yang kaya nutrisi dari lapisan yang lebih dalam. Upwelling dapat terjadi sebagai respon dari dinamika arus eddy, dan ini kami temukan salah satunya di perairan Teluk Tolo dan sekitarnya. Penelitian ini menganalisis pengaruh arus eddy terhadap upwelling di wilayah tersebut dengan menggunakan data citra satelit dari Copernicus Marine Environment Monitoring Service (CMEMS), Copernicus Climate Change Service (C3S) dan model klimat dari ECMWF Reanalysis v5 (ERA 5). Data suhu permukaan laut (SST), klorofil-a permukaan laut (SSC), tinggi permukaan laut (SSH), dan angin permukaan laut (SSW) digunakan untuk memahami bagaimana arus eddy memengaruhi upwelling di wilayah kajian selama periode 15 tahun pengamatan (tahun 2006 hingga 2020). Hasil penelitian menunjukkan jumlah arus eddy yang terbentuk adalah 341 buah (195 buah untuk eddy siklonik (CE) dan 146 buah untuk eddy antisiklonik (AE)). Jumlah maksimum CE (AE) ditemukan pada bulan Januari dan Juni (bulan Juli dan Oktober) serta minimum pada bulan September (bulan Mei). CE menyebabkan anomali negatif SST serta anomali positif SSC dengan perubahan signifikan setelah dua hari CE terbentuk. Karakteristik anomali SST dan SSC pada CE didukung melalui nilai EPV (Ekman pumping velocity) positif (maksimum 3,5x10-6 m/s) yang mengindikasikan adanya upwelling. Sedangkan AE menyebabkan anomali positif SST serta anomali negatif SSC, dan mulai berubah tiga hari setelah AE terbentuk dengan nilai EPV negatif (minimum -1,1x10-6 m/s) yang menandakan adanya downwelling. Pengaruh eddy pada perairan Teluk Tolo dan sekitarnya terhadap upwelling lebih dominan dibandingkan dengan pengaruh angin pada bulan Juni, Juli, dan Agustus.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Bakun, A., Olivar, M.P., & Govoni, J.J., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina, 70(S2), 105–122. https://doi.org/10.3989/SCIMAR.2006.70S2105
Brown, J, Colling, A., Park, D., Philips, J., Rothery, D., & Wright, J., 1989. Ocean Circulation. The Open University.
Chen, G., Wang, D., & Hou, Y., 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Continental Shelf Research, 47, 178–185. https://doi.org/10.1016/J.CSR.2012.07.011
Chen, Y., Qiu, D., Cornillon, P., & Wu, M., 2022. Chlorophyll bloom enhanced by a mesoscale eddy in the western South China Sea. Frontiers of Earth Science, 1–8. https://doi.org/10.1007/S11707-022-0984-3/METRICS
Darmawan, L.K., Pranowo, W.S., Harsono, G., Sukoco, N. B., & Putra, I., 2020. Purwarupa Informasi untuk Keselamatan Pelayaran Berdasarkan Karakteristik Eddy di Laut Banda: Information Prototype for Sailing Safety Based on Eddy Characteristics in the Banda Sea. Jurnal Chart Datum, 6(2), 33-39.
Ferdyan, A., Syamsuddin, M. L., S Yuliadi, L. P., & Pranowo, W.S., 2022. Distribution and Characteristics of Eddies in Indonesian Seas. Global Scientific Journals. www.globalscientificjournal.com
Ferrari, R., & Wunsch, C., 2010. The distribution of eddy kinetic and potential energies in the global ocean. Tellus A. https://doi.org/10.3402/TELLUSA.V62I2.15680
Gaube, P., J. McGillicuddy Jr, D., & Moulin, A. J., 2019. Mesoscale eddies modulate mixed layer depth globally. Geophysical Research Letters, 46(3), 1505-1512.
Kartadikaria, A.R., Miyazawa, Y., Nadaoka, K., & Watanabe, A., 2012. Existence of eddies at crossroad of the Indonesian seas. Ocean Dynamics, 62(1), 31–44. https://doi.org/10.1007/S10236-011-0489-1
Kartadikaria, A.R., Napitupulu, G., Rangga, K., Radjawane, I. M., & Abdullah, F. A. R., 2024. Ketidakseragaman Sebaran Spasial Variabilitas Musiman Eddy di Perairan Barat Laut Indonesia. Jurnal Kelautan Tropis, 27(1), 1-16.
Li, J., Roughan, M., & Kerry, C., 2021. Dynamics of Interannual Eddy Kinetic Energy Modulations in a Western Boundary Current. Geophysical Research Letters, 48(19), e2021GL094115. https://doi.org/10.1029/2021GL094115
Liu, F., & Tang, S., 2022. A Double-Peak Intraseasonal Pattern in the Chlorophyll Concentration Associated With Summer Upwelling and Mesoscale Eddies in the Western South China Sea. Journal of Geophysical Research: Oceans, 127(1), e2021JC017402. https://doi.org/10.1029/2021JC017402
Mann, K. H., & Lazier, J.R.N., 2006. Biological-Physical Interactions in the Oceans. Dynamics of Marine Ecosystems.
McGillicuddy, D. J., 2016. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annurev-Marine, 8, 125–159. https://doi.org/10.1146/ANNUREV-MARINE-010814-015606
Mustikasari, E., Dewi, L.C., Heriati, A., & Pranowo, W.S., 2015. Pemodelan pola arus barotropik musiman 3 dimensi (3D) untuk mensimulasikan fenomena upwelling di Perairan Indonesia. Jurnal Segara, 11(1).
Nuzula, F., Permata Sari, L.Y., Laksmini, M., & Purba, N.P., 2016. Variabilitas Temporal Eddy di Perairan Makassar – Laut Flores. Jurnal Perikanan Dan Kelautan Unpad, 7(1), 484116.
Okubo, A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts, 17(3), 445–454. https://doi.org/10.1016/0011-7471(70)90059-8
Park, J.E., Park, K.A., Kang, C.K., & Park, Y.J., 2020. Short-Term Response of Chlorophyll-a Concentration to Change in Sea Surface Wind Field over Mesoscale Eddy. Estuaries and Coasts, 43(3), 646–660. https://doi.org/10.1007/S12237-019-00643-W/FIGURES/10
Park, K.A., Cornillon, P., & Codiga, D.L., 2006. Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. Journal of Geophysical Research: Oceans, 111(C3), 3021. https://doi.org/10.1029/2005JC003016
Pranowo, W.S., Phillips, H., & Wijffels, S., 2005. Upwelling event 2003 along south Java Sea and lesser Sunda Islands. J. Segara, 1(2), 63-67.
Pranowo, W.S., Tussadiah, A., Syamsuddin, M. L., Purba, N. P., & Riyantini, I., 2016. Karakteristik dan Variabilitas Eddy di Samudera Hindia Selatan Jawa. Jurnal Segara, 12(3), 159–165.
Qiu, B., Chen, S., Klein, P., Sasaki, H., & Sasai, Y., 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12), 3079-3098.
Ramadhan, M., Sugianto, D., Wirasatriya, A., Setiyono, H., Kunarso, & Maslukah, L., 2020. Characteristics of Halmahera Eddy and its relation to sea surface temperature, chlorophyll-a, and thermocline layer. IOP Conference Series: Earth and Environmental Science, 530(1). https://doi.org/10.1088/1755-1315/530/1/012039
Robinson, A.R., 1983. Overview and summary of eddy science. In Eddies in marine science (pp. 3-15). Berlin, Heidelberg: Springer Berlin Heidelberg.
Robinson, A.R., 2012. Eddies in marine science. Springer Science & Business Media.
Shafeeque, M., Balchand, A.N., Shah, P., George, G., S., Varghese, E., Joseph, A.K., Sathyendranath, S., & Platt, T., 2021. Spatio-temporal variability of chlorophyll-a in response to coastal upwelling and mesoscale eddies in the South Eastern Arabian Sea. International Journal of Remote Sensing, 42(13), 4840–4867. https://doi.org/10.1080/01431161.2021.1899329
Shinoda, T., Han, W., Metzger, E.J., & Hurlburt, H.E., 2012. Seasonal variation of the Indonesian throughflow in Makassar Strait. Journal of Physical Oceanography, 42(7), 1099–1123.
Simanjuntak, F., & Lin, T. H., 2022. Monsoon effects on chlorophyll-a, sea surface temperature, and ekman dynamics variability along the southern coast of lesser Sunda islands and its relation to ENSO and IOD based on satellite observations. Remote Sensing, 14(7), 1682.
Simanungkalit, Y.A., Pranowo, W.S., Purba, N.P., Riyantini, I., & Nurrahman, Y., 2018. Influence of El Niño Southern Oscillation (ENSO) phenomena on Eddies Variability in the Western Pacific Ocean. IOP Conference Series: Earth and Environmental Science, 176(1), 012002. https://doi.org/10.1088/1755-1315/176/1/012002
Singh, A., Gandhi, N., Ramesh, R., & Prakash, S., 2015. Role of cyclonic eddy in enhancing primary and new production in the Bay of Bengal. Journal of Sea Research, 97, 5–13. https://doi.org/10.1016/J.SEARES.2014.12.002
Small, R. J., deSzoeke, S. P., Xie, S. P., O’Neill, L., Seo, H., Song, Q., Cornillon, P., Spall, M., & Minobe, S., 2008. Air–sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45(3–4), 274–319. https://doi.org/10.1016/J.DYNATMOCE.2008.01.001
Stern, M.E., 1965. Interaction of a uniform wind stress with a geostrophic vortex. Deep Sea Research and Oceanographic Abstracts, 12(3), 355–367. https://doi.org/10.1016/0011-7471(65)90007-0
Suharyo, G.B.T., Purba, N. P., Yuliandi, L.P.S., & Syamsuddin, M.L., 2020. Kondisi suhu dan salinitas serta korelasinya dengan variabilitas eddy di Perairan Halmahera dan Mindanao. Depik, 9(3), 421–427.
Umaroh, A.S., & Muslim., 2017. The Dynamics of Sea Surface Height and Geostrophic Current in the Arafura Sea. IOP Conference Series: Earth and Environmental Science, 55(1), 012046. https://doi.org/10.1088/1755-1315/55/1/012046
Vinayachandran, P.N.M., Masumoto, Y., Roberts, M.J., Huggett, J.A., Halo, I., Chatterjee, A., Amol, P., Gupta, G.V.M., Singh, A., Mukherjee, A., Prakash, S., Beckley, L.E., Raes, E.J., & Hood, R., 2021. Reviews and syntheses: Physical and biogeochemical processes associated with upwelling in the Indian Ocean. Biogeosciences, 18(22), 5967–6029. https://doi.org/10.5194/BG-18-5967-2021
Vortmeyer-Kley, R., Gräwe, U., & Feudel, U., 2016. Detecting and tracking eddies in oceanic flow fields: a Lagrangian descriptor based on the modulus of vorticity. Nonlinear Processes in Geophysics, 23(4), 159–173.
Wardani, R., Pranowo, W. S., & Indrayanti, E., 2013. Struktur vertikal upwelling–downwelling di Samudera Hindia Selatan Jawa hingga Selatan Bali berdasarkan salinitas musiman periode 2004–2010. Depik, 2(3).
Wardani, R., Pranowo, W. S., & Indrayanti, E., 2014. Variabilitas salinitas berkaitan dengan ENSO dan IOD di Samudera Hindia (selatan Jawa hingga selatan Nusa Tenggara) periode tahun 2004-2010. Jurnal Harpodon Borneo, 7(1).
Weiss, J., 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2–3), 273–294. https://doi.org/10.1016/0167-2789(91)90088-Q
Wirasatriya, A., Susanto, R.D., Kunarso, K., Jalil, A.R., Ramdani, F., & Puryajati, A.D., 2021. Northwest monsoon upwelling within the Indonesian seas. International Journal of Remote Sensing, 42(14), 5437–5458. https://doi.org/10.1080/01431161.2021.1918790
Wu, M.L., Wang, Y.S., Wang, Y.T., Sun, F.L., Li, X., Gu, F.F., & Xiang, J.C., 2022. Vertical patterns of chlorophyll a in the euphotic layer are related to mesoscale eddies in the South China Sea. Frontiers in Marine Science, 9, 948665. https://doi.org/10.3389/FMARS.2022.948665/BIBTEX
Zatsepin, A.G., Baranov, V.I., Kondrashov, A.A., Korzh, A.O., Kremenetskiy, V.V., Ostrovskii, A.G., & Soloviev, D.M., 2011. Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology, 51, 554-567.
Zhan, P., Subramanian, A.C., Yao, F., Kartadikaria, A.R., Guo, D., & Hoteit, I., 2016. The eddy kinetic energy budget in the Red Sea. Journal of Geophysical Research: Oceans, 121(7), 4732-4747.
Zhao, D., Xu, Y., Zhang, X., & Huang, C., 2021. Global chlorophyll distribution induced by mesoscale eddies. Remote Sensing of Environment, 254, 112245. https://doi.org/10.1016/J.RSE.2020.112245
DOI: http://dx.doi.org/10.32693/jgk.22.1.2024.877