ESTIMASI KEDALAMAN BATUAN DASAR CEKUNGAN JAWA TIMUR UTARA MENGGUNAKAN METODE SOURCE PARAMETER IMAGING DAN ANALISIS SPEKTRUM DATA GEOMAGNET

Subarsyah Subarsyah, Shaska Ramadhan Zulivandama

Abstract


Studi mengenai cekungan hidrokarbon selalu berkaitan dengan ketebalan sedimen. Ketebalan sedimen merupakan salah satu faktor yang mempengaruhi terbentuknya hidrokarbon. Cekungan Jawa Timur Utara merupakan cekungan terbukti hidrokarbon namun wilayah kerja aktif produksi ataupun eksplorasi hanya tersebar di bagian timur dan selatan dari cekungan tersebut. Studi ini dilakukan untuk melihat adanya area lain pada Cekungan Jawa Timur Utara yang berpotensi mengandung hidrokarbon berdasarkan ketebalan sedimennya dalam hal ini berasosiasi dengan kedalaman batuan dasar. Metode yang digunakan untuk menghitung kedalaman batuan dasar ialah metode Source Parameter Imaging (SPI) dan analisis spektrum menggunakan data anomali magnet total. SPI merupakan metode semi-otomatis perhitungan kedalaman batuan dasar. Akurasi yang dihasilkan mirip dengan metode Euleur Deconvolution, namun metode SPI memiliki keunggulan dalam menghasilkan estimasi kedalaman batuan dasar koheren yang lebih lengkap. Pada Cekungan Jawa Timur Utara ketebalan sedimen menipis ke bagian utara sehingga secara umum wilayah bagian utara kurang potensial untuk terjadinya pembentukan hidrokarbon. Namun di bagian utara P. Kangean terdapat area dengan ketebalan sedimen maksimum 6500 km, area ini diperkirakan memiliki potensi untuk terjadinya pembentukan hidrokarbon.

Kata Kunci: Kedalaman batuan dasar, Analisis Spektrum, Geomagnet.

 

The study of hydrocarbon basins is always related to sediment thickness. Sediment thickness is one of the factors that influence the hydrocarbons forming. The North East Java Basin is a proven hydrocarbon basin but either active or exploration working area is only spread in the eastern and southern parts of the basin. This study was conducted to see the existence of other areas in the North East Java Basin that could potentially contain hydrocarbons based on the thickness of the sediment that associated with basement depth. The method used to calculate sediment thickness is the Source Parameter Imaging (SPI) and spectrum analysis methods using total magnetic anomaly data. SPI is a semi-automatic method to calculate basement depth. Result accuracy is similar to that of Euler Deconvolution, however SPI has the advantage of producing a more complete set of coherent solution points. In the North East Java Basin, the sediment thickness is thinning to the northern part of basin, therefore the northern region is less potential for hydrocarbon formation. However, in the northern part of Kangean Island there is an area with a maximum sediment thickness of 6500 km, this area is estimated to have the potential for hydrocarbon formation.

Key words: Basement depth, Spectral Analysis, Geomagnet.


Keywords


Kedalaman batuan dasar, Analisis Spektrum, Geomagnet

Full Text:

PDF

References


Ayuba, R. A., dan Nur, A., 2018., Depth Estimates Deduced from Source Parameter Imaging of High Resolution Aeromagnetic Data over Part of Nasarawa and Environs, North-Central Nigeria. International Journal of New Technology and Research (IJNTR), Vol. 4.4: 54-62.

Bhattacharyya, B. K. dan Lei-Kuang Leu, 1975. Spectral Analysis of gravity and magnetic anomalies due to two dimensional structures: Geophysics, v. 40, pp. 993-1013.

Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, New York.

Blakely, R. J. dan Simpson, R. W., 1986, Approximating edges of source bodies from magnetic or gravity anomalies: Geophysics, Vol. .51:1494-149.

Cavalin, dkk, 2019. Application of Full Waveform Inversion To Resolve An Eroded Shallow Carbonate Platform, North Madura, East Java, Indonesia, Proceeding IPA, Forty-Third Annual Convention & Exhibition.

Darmawan, dkk., 2018. North Madura Platform Charging & Entrapment Modeling Study: An Effort to Understand Hydrocarbon Filling History in Bukit Tua Field, Proceeding IPA, Forty-Second Annual Convention & Exhibition.

ESDM one Map, Pusat Data dan Informasi, Kementerian Energi dan Sumber Daya Mineral, 2019. https://geoportal.esdm.go.id/migas/.

Eze, M.O., Amoke, A. I., Dinneya, O. C., dan Aguzie, P. C., 2017. Basement and Automatic Depth to Magnetic Source Interpretation of Parts of Southern Benue Trough and Anambra Basin. Journal of Applied Geology and Geophysics, Vol. 5 .3: 67-74.

Fairhesd, J. D., Salem, A. dan Bakely, J. Continental to Basin Scale Mapping of Basement Depth and Structure Using the Tilt-Depth Method. EGM International Workshop 2010, Capri, Italy.

Garcia, J.G. dan Ness, G.E., 1994. Inversion of the power spectrum from magnetic anomalies. Geophysics 59 (3), 391–401.

Hassan, H. H, Charters, R. A., dan Peirce, J. W. Mapping Depth to Basement Using 2D Werner Inversion of High-Resolution AeroMagnetic (HRAM) Data. Extended Abstract at CSPG CSEG GeoConvention 2007, Calgary, Alberta, Canada.

Harris, C. S, 1982. The Biostratigrafi of The AGIP Indonesia NSA-1C Well Drilled Offshore North Bali, Indonesia. Project Report 1123.

Marwan, A. A., dan Yahia, M., A, 2018. Using Aeromagnetic Data for Mapping the Basement Depth and Contact Locations, At Southern Part of Tihamah Region, Western Yemen. Egyptian Journal of Petroleum 27: 485-495. http://dx.doi.org/10.1016/j.ejpe.2017.07.015.

Maurizio, F., Tatina, Q., dan Angelo, S., 1998. Exploration of a lignite bearing in Northern Ireland, using ground magnetic. Geophysics 62 (4), 1143–1150.

Migas Data Repository, Pusat Data dan Informasi Kementerian Energi dan Sumber Daya Mineral, 2020. https://datamigas.esdm.go.id/

Mishra, D. C dan Naidu, P. S., 1974. Two-dimensional power spectral analysis of aeromagnetic fields. Geophys Prospect 22:345–353.

Mono, J. A., Ndougsa-Mbarga, T., Bi-Alou, M. B., Ngoh, J. D. dan Uwono, O. U., 2018. Inferring the Subsurface Basement Depth and the Contact Locations from Aeromagnetic Data over Loum-Minta Area (Centre-East Cameroon). International Journal of Geo sciences, 9, 435-459. https://doi.org/10.4236ijg.2018.97028.

Mudjiono, R., dan Pireno, G. E., 2001, Exploration Of The North Madura Platform, Offshore East Java Indonesia, Proceedings, Indonesian Petroleum Association 28th Annual Convention & Exhibition.

Ofoha, C. C., Emujakporue, G., Ngwueke, M. I., dan Kiani, I., 2016. Determination of Magnetic Basement Depth over Parts of Sokoto Basin, within Northern Nigeria, Using Improved Source Parameter Imaging (ISPI) Technique. World Scientific News 50: 266-277.

Odegard, M. E, Weber, W. R, Stavar, D. D. dan Dickson, W. G. Depth to Basement Using Spectral Inversion of Magnetic and Gravity Data: Application to Northwest Africa And Brazil. SEG Annual Meeting 2004, Denver, Colorado.

Phillips, J. D., 1978. A Program to Estimate Depth to Magnetic Basement from Sampled Magnetic Profiles. Open File Report, Virginia, USGS.

Roest, W. R., Verhoef, J. dan Pilkington, M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics, Vol. 57, No. 1: 116-125.

Salem, A., Green, C., Cheyney, S., Fairhead, D., Aboud, E., dan Campbell, S., 2014. Mapping the depth to magnetic basement using inversion of pseudogravity: Application to the Bishop model and the Stord Basin, northern North Sea. Interpretation, Vol. 2, No. 2. T69–T78. http://dx.doi.org/10.1190/INT-2013-0105.1.

Santosa, F. D., 1976. Geological Final Report Poleng Field B-1 Well. Indonesia Cities Service.

Satyana, A. H., 2005. Oligo-Miocene Carbonate of Java Indonesia: Tectonic-Volcanic Setting and Petroleum Implications. Procc. IPA. Thirtieth Annual Convention and Exhibition, August 2005.

Spector, A. dan F.S. Grant, 1970. Statistical models for interpreting magnetic data, Geophysics, v. 35, no. 2, pp. 293-302.

Sribudiyani, Prasetya, I., Muchsin, N., Syapiie, B., Ryacudu, R., Asikin, S., Kunto, T., Harsolumakso, A. H., Astono, P., dan Yulianto , I., 2003, The Collision of The East Java Microplate and Its Impication for Hydrocarbon Occurences in The East Java Basin, Proceedings of 29th Annual Indonesian Petroleum Association Convention.

Thurston, J. B., dan Smith, R.S., 1997. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPITM method, Geophysics 62 (3) 807–813.

Vahid Teknik dan Abdolreza Ghods, 2017. Depth of Magnetic Basement in Iran Based on Fractal Spectral Analysis of Aeromagnetic Data. Geophys. J. Int:209, 1878-1891. doi: 10.1093/gji/ggx132.




DOI: http://dx.doi.org/10.32693/jgk.18.2.2020.662