TIDAL HARMONIC ANALYSIS AND PREDICTION TO SUPPORT EARLY WARNING FOR COASTAL FLOODING

Randi Firdaus, Nurul Tazaroh, Oky Surendra, Eko Prasetyo, Riris Adriyanto

Abstract


The Indonesian Maritime Continent (IMC) is the largest archipelago that vulnerable to climate change especially sea level rise. Some coastal areas frequently experience coastal flooding affecting the activities and infrastructures. Thus, an accurate tide prediction in this region plays a pivotal role in providing the early warning, mitigation, and adaptation to frequent coastal flooding. BMKG, through the Center for Marine Meteorology has done undertaken efforts to provide an accurate tidal prediction information by developing the tidal information system call the Indonesian Tidal Information System (INATIS). Tidal harmonic analysis (THA) using the least-square method was applied to sea level data from 49 Marine Automatic Weather System (MAWS) stations collected between 2020-2021 to generate tidal predictions for the period of 2022-2023. Accuracy was assessed based on Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE). MAWS stations with prediction accuracy above 80% visualized on publicly accessible online platform of the BMKG website using the open-source Looker Studio. Verification of the tidal predictions showed an average prediction accuracy of 93.21% with a MAE of 0.11 m. The high accuracy of INATIS demonstrates its potential as a reference for coastal flood early warning systems.


Keywords


tidal prediction, tidal accuracy, Ina-TIS, least-square method

Full Text:

PDF

References


Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., and Yan J. 2009. The impact of sea level rise on developing countries: A comparative analysis. Climate Change, 93(3–4):379–388. doi:10.1007/s10584-008-9499-5.

Egbert, G.D., and Ray, R.D. 2017. Tidal prediction. Marine Research, 75(3):189–237. doi:10.1357/002224017821836761.

Frederikse, T., Landerer. F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V.W., Dangendorf, S., Hogarth, P., Zanna, L., and Cheng L. 2020. The causes of sea-level rise since 1900. Nature, 584(7821):393–397. doi:10.1038/s41586-020-2591-3.

Granata, F., and Di Nunno, F. 2021. Artificial Intelligence models for prediction of the tide level in Venice. Stochastic Environmental Research and Risk Assessment, 35(12):2537–2548. doi:10.1007/s00477-021-02018-9.

Haditiar, Y., Putri, M.R., Ismail, N., Muchlisin, Z.A., Ikhwan, M., and Rizal, S. 2020. Numerical study of tides in the Malacca Strait with a 3-D model. Heliyon, 6(9):e04828. doi:10.1016/j.heliyon.2020.e04828.

IOOS. 2016. Manual for Real-Time Quality Control of Hgh Frequency Radar Surface Current Data. May.

Lewis, C.D., 1982. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth Heinemann.

Li, S., Liu, L., Cai, S., and Wang G. 2019. Tidal harmonic analysis and prediction with least-squares estimation and inaction method. Estuarine, Coastal, and Shelf Science, 220:196–208. doi:10.1016/j.ecss.2019.02.047.

Parker, B.B. 2007. Tidal analysis and prediction. Silver Spring, MD, NOAA NOS Center for Operational Oceanographic Products and Services, 378pp (NOAA Special Publication NOS CO-OPS 3). DOI: 10.25607/OBP-191.

Pawlowicz, R., Beardsley, B., and Lentz, S. 2002. Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE. Computer and Geoscience, 28:929–937.

Riama, N.F., Sari, R.F., Rahmayanti, H., Sulistya, W., and Nurrahmat, M.H. 2021. The level of public acceptance to the development of a coastal flooding early warning system in Jakarta. Sustainability, 13(2):1–24. doi:10.3390/su13020566.

Riazi, A. 2020. Accurate tide level estimation: A deep learning approach. Ocean Engineering, 198:107013. doi:10.1016/j.oceaneng.2020.107013.

Small, C., and Nicholls, R.J. 2003. A global analysis of human settlement in coastal zones. Coastal Research, 19(3):584–599.

Snipes, G. 2018. Google Data Studio [Product Review]. Journal of Librarianship and Scholarly Communication, 6 (General Issue), eP2214. DOI: 10.7710/2162-3309.2214

Storto, A., Bonaduce, A., Feng, X., and Yang, C. 2019. Steric sea level changes from ocean reanalyses at global and regional scales. Water, 11(10). doi:10.3390/w11101987.

Su, Y., and Jiang, X. 2023. Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model. Scientific Report, 13(1):1–13. doi:10.1038/s41598-022-26213-y.

Thomson, R.E., and Emery, W. 2014. Data Analysis Method in Physical Oceanography. Third Volume. Elsevier B.V.

Ward, P.J., Marfai, M.A., Yulianto, F., Hizbaron, D.R., and Aerts, J.C.J.H. 2011. Coastal inundation and damage exposure estimation: A case study for Jakarta. Natural Hazards, 56(3):899–916. doi:10.1007/s11069-010-9599-1.

Widlansky, M.J., Long, X., and Schloesser, F. 2020. Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater. Communication Earth and Environmet, 1(1):1–12. doi:10.1038/s43247-020-0008-8.

Zhang, Y.H., Fernandez-Montblanc, T., Pringle, W., Yu, H.C., Cui, L., and Moghimi, S. 2023. Global seamless tidal simulation using a 3D unstructured grid model (SCHISM v5.10.0). Geoscience Model Development, 16:2565-2581. doi: 10.5194/gmd-16-2565-2023.




DOI: http://dx.doi.org/10.32693/bomg.39.1.2024.863