STUDY OF POTENTIAL INSTALLATION OF OCEAN THERMAL ENERGY CONVERSION (OTEC) IN THE NORTH WATERS OF LEMBATA, NTT

Gisela Malya Asoka, Denny Nugroho Sugianto, Yani Permanawati

Abstract


Ocean thermal energy conversion is an attempt to convert potential energy in the variances heat content of seawater into other energy by utilizing the temperature change between the sea surface and deep sea at least 20°C. The Lembata waters is near to the equator, sea surface temperature tends to be warm and stable. This research was conducted to estimate the potential energy generated from a closed cycle OTEC system in North Lembata Waters. This study used temperature data from Global Ocean Physics Reanalysis from Copernicus Marine Environment Monitoring Service (CMEMS) for 9 years (2012-2020) in 6 stations. Validation was performed using the primary CTD Lembata OTEC Team of the Marine Geological Institute (MGI). Temperature data validation results on the MSE (Mean Square Error), RMSE (Root Mean Square Error), and MAPE (Mean Absolute Percentage Error) methods are considered to represent field temperature conditions. The variability value shows the station point in the North Lembata Waters has a temperature with slight differences. The vertical temperature change (ΔT) shows between 20.98°C to 23.44°C. Potential electric power resulting from the OTEC system using the technical estimation formula. The average net power generated from those temperature gradients ranges from 5.65 MW-7.56 MW, respectively. The Lembata waters have temperature conditions suitable for OTEC installations. Station C-4 has a power potential of 6.84 MW with a depth of 763 m and the distance of 1.86 km from the coastline. Station C-4 in the Omesuri sub-district is the best point for OTEC installation in North Lembata Waters.


Keywords


potential energy, seawater temperature, OTEC, Lembata

Full Text:

PDF

References


Atmadipoera, A.S., Horhoruw, S.M., Purba, M., and Nugroho, D.Y., 2016. Spatial and Temporal Variation of Indonesian Throughflow in The

Makassar Strait. Jurnal Ilmu dan Teknologi Kelautan Tropis FPIK-IPB, 8 (1): 299-320.

Bassam, N.E., Maegaard, P., and Schlichting, M.L., 2013.

Distributed Renewable Energies for Off-Grid Communities Strategies and Technologies toward Achieving Sustainability in Energy Generation and Supply. Elsevier Ltd. https://doi.org/ 10.1016/ B978-0-12-397178-4.00011-6.

BNPB. 2016. RBI Risiko Bencana Indonesia.

British Petroleum. 2021. Statistical Review of World Energy Indonesia's Energy Market in 2020.

Copernicus. 2021. Quality Information Document for Global Ocean Reanalysis Products GLOBAL_REANALYSI_PHY_001_030.https:// catalogue.marine.copernicus.eu/documents/ QUID/CMEMS-GLO-QUID-001-030.pdf [accessed on 1 September 2022]

Gordon, A.L, Giulivi, C.F, Ilahude, A.G., 2003. Deep Topographic Barriers within the Indonesian Seas. Deep-Sea Research II, 50:2205–2228.

Gordon, A.L., 2005. Oceanography of the Indonesian Seas and their Throughflow. Oceanography. 18:14–27.

Ichsari, L.F., Handoyo, G., Setiyono, H., Ismanto, A., Marwoto, J., Yusuf, M., and Rifai, A., 2020. Studi Komparasi Hasil Pengolahan Pasang Surut dengan 3 Metode (Admiralty, Least Square dan Fast Fourier Transform) di Pelabuhan Malahayati, Banda Aceh. Indonesian Journal of Oceanography, 2 (2).

Ilahude, A.G., and Gordon, A.L., 1996. Thermocline Stratification within the Indonesian Seas. J of Geophy Res., 101 (C5): 12,401-12,409. doi: 0148- 0227/96/95JC-03798$09.00.

Ilahude, D., Yuningsih A., Permanawati, Y., Yosi, M., Zuraida, R., and Annisa, N., 2020. Site Determination for OTEC Turbine Installation of 100 MW Capacity in North Bali Waters. Bulletin of the Marine Geology, 35 (1):1-12.

Julianto, C., 2020. Studi Potensi Pemanfaatan OTEC (Ocean Thermal Energy Conversion) Menggunakan Siklus Terbuka untuk Mengatasi Krisis Listrik dan Air Bersih di Pulau Lembata, Nusa Tenggara Timur. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” ISSN 1693- 4393. Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia,Yogyakarta, 14-15 Juli l 2020.

Lewis, C.D., 1982. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. Butterworth- Heinemann.

Masutani, S.M., and Takahashi, P.K., 2001. Ocean Thermal Energy Conversion (OTEC). Academic Press: Honolulu, 1993-1999 pp.

Mignac, C., Tanajura, A.S., Santana, A.N., Lima, L.N., and Xie, J., 2015. Argo Data Assimilation into HYCOM with an EnOI Method in the Atlantic Ocean. Ocean Sci. Discuss, 11(17):33–51.

Ministry of Energy and Mineral Resources press release number: 311.pers/04/SJI/2020 Date: 22 October 2020 [Accessed on 6 April 2022].

Morales, A.D., Montoya-Sanchez, R.A., Osorio, A.F., and Otero-Diaz, L.J., 2014. Ocean Thermal Energy Resources in Colombia. Journal Renewable Energy, 66: 759-769.

Nihous, G., 2007. A Preliminary Assessment of Ocean Thermal Energy Conversion Resources. Journal of Energy Resources Technology, 129 : 10-17.

Permanawati, Y., Prartono, T., Atmadipoera, A.S., Zuraida, R., Chang, Y., 2016. Rekam Sedimen Inti untuk Memperkirakan Perubahan Lingkungan di Perairan Lereng Kangean. Jurnal Geologi Kelautan, 14 (2) :65-77.

Permanawati, Y., and Hernawan, U., 2018. Distrbusi Karbon Organik dalam Sedimen Inti di Perairan Lembata, Laut Flores. Jurnal Geologi Kelautan, 16 (1) : 51-66.

Radjawane, I.M., and Hadipoetranto, P.P., 2014. Karakteristik Massa Air di Percabangan Arus Lintas Indonesia Perairan Sangihe Talaud Menggunakan Data Index SATAL 2010. J Ilmu dan Tek Kelautan Tropis, 6 (2):525-536.

Raharjo, N.H., 2011. Studi Pemanfaatan Energi Panas Laut dan Gelombang Laut untuk Sistem Kelistrikan di Kabupaten Karangasem Bali. Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS).

Rysnawati, N.M., Sukarasa, I.K., and Paramarta, I.B.A., 2017. Analisa Tingkat Bahaya dan Kerentanan Bencana Gempa Bumi di Wilayah Nusa Tenggara Timur (NTT). Buletin Fisika, 18 (1) : 32 – 37.

Santoso, A., 2005. Pemantauan Hidrografi dan Kualitas Air di Teluk Hurun Lampung dan Teluk Jakarta. Jurnal Teknologi Lingkungan P3TL-BPPT, 6 (3) : 433-437.

Suprijo, T., Poerbo, P.R., Park, H., Kartadikaria, A.R., and Yosi, M., 2021. Potential Ocean Thermal Energy Conversion in Indonesian Waters Territory. Journal of Coastal Research, 114 : 285– 289.

Susanto, R.D., Ffield, A., Gordon, A.L., and Adi, T.R., 2012. Variability of Indonesian Throughflow within Makassar Strait, 2004-2009. Journal of Geophysical Research Oceans, 117, C09013: 1- 16. doi:10.1029/2012JC008096.

Syamsuddin, M.L., Attamimi, A., Nugraha, A.P., Gibran, S., Afifah, and Oriana, N., 2015. OTEC Potential in the Indonesian Seas. Energy Procedia, 65 :215- 222, Elsevier Ltd.

Tim OTEC Lembata., 2017. Laporan Penelitian Potensi OTEC di Perairan Lembata, NTT. Laporan Kegiatan Puslitbang Geologi Kelautan. Balitbang ESDM. KESDM. Unpublished.

Vega, L.A., 1992. Ocean Thermal Energy Conversion.

Encyclopedia of Sustainability Science and Technology,Springer : 7296-7328.

Vega, L.A., 2002. Ocean Thermal Energy Conversion Primer. Marine Technology Society Journal, 6 (4): 25-35.

Vega, L.A., and Michaelis, D., 2010. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water. Offshore Technology Conference, 20957 : 1-17 pp.

Vranes, K., Gordon, A. L., Amy F., 2002. The Heat Transport of the Indonesian Throughflow and Implications for the Indian Ocean Heat Budget. Deep-Sea Research II, 49 : 1391–1410.

Widyartono, M., and Rahmadian, R., 2019. Potensi OTEC di Provinsi Papua Indonesia. Indonesian Journal of Electrical and Electronics Engineering, 2 (1): 17 – 21.

Yosi, M., 2014. Potensi Energi Laut Indonesia. Jurnal Mineral dan Energi, 12 (1): 54-66.




DOI: http://dx.doi.org/10.32693/bomg.38.1.2023.789