MULTI-MODEL VARIATION OF THE ENHANCED ASIAN RAINFALL AND CONTINENT-OCEAN THERMAL GRADIENT FROM PRE-INDUSTRIAL TO MID-HOLOCENE

Adinda Maharani, Yudha Setiawan Djamil, Rima Rachmayani

Abstract


Rainfall over the Asian continent during the mid-Holocene was higher than today as shown by the rainfall proxy records. During the mid-Holocene, increased rainfall over the Asian Continent has been suggested to be associated with the strengthening of the Asian Summer Monsoon (ASM) following a sharper continent-ocean thermal gradient. This study examined multi-model variation between changes of the continent-ocean thermal gradient and the increased rainfall over Asia during the mid-Holocene as compared to the pre-Industrial. We analyzed surface temperature, precipitation, and wind at 850mb from nine Global Climate Models (GCMs) which are all obtained from the database of the Paleoclimate Modeling Intercomparison Project Phase-3 (PMIP3). Multi-model analysis shows that changes in a continent-ocean thermal gradient has a positive correlation with ASM wind. However, a negative correlation occurs between changes in the continent-ocean thermal gradient with Asian rainfall. Models that simulate large changes in the continent-ocean thermal gradient produced the smallest increase in the Asian rainfall and vice versa. Such inverse relation is likely due to the cooling of Indian Ocean SST since its correlation scores with Asian rainfall is much higher than the one with the warming of the Asian continent. Thus, multi-model variation of the increased rainfall over the Asian continent between mid-Holocene and today is mainly related to the multi-model variation of the cooling in the Indian Ocean SST.


Keywords


Asian Summer Monsoon, Indian Ocean, Multi-model, Sea Surface Temperature, PMIP3

Full Text:

PDF

References


Bartlein, P. J., Harrison, S. P., Brewer, S., Connor, S., Davis, B. A. S., Gajewski, K., Guiot, J., Harrison- Prentice, T. I., Henderson, A., Peyron, O., Prentice, I. C., Scholze, M., Seppa, H., Shuman, B., Sugita, S., Thompson, R. S., Viau, A. E., Williams, J., & Wu, H. 2011. Pollenbased continental climate reconstructions at 6 and 21 ka a global synthesis. Climate Dynamics, 37(3–4):

–802. 0904-1.

https://doi.org/10.1007/s00382-010-

Berger, A. 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of the Atmospheric Sciences, 35(12): 2362–2367.

Braconnot, P., Denvil, S., Foujols, M. A., Caubel, A., Marti, O., Dufresne, J.-L., Bopp, L., Cadule, P., Ethé, C., Idelkadi, A., Mancip, M., Masson, S., Mignot, J., Ionela, M., Balkanski, Y., Bekki, S., Bony, S., Brockman, P., Codron, F.,Vuichard, N. 2016. IPSL-CM5A-LR model output prepared for CMIP5 midHolocene experiment, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/10.1594/ WDCC/CMIP5.IPILmh. https://www.wdc- climate.de/ui/ accessed at 2021-08-20.

Braconnot, P., Marti, O., Joussaume, S., & Leclaineche, Y. 2000. Ocean Feedback in Response to 6 kyr BP Insolation. Journal of Climate, 13: 1537–1553.

Chen, F., Yu, Z., Yang, M., Ito, E., Wang, S., Madsen, D. B., Huang, X., Zhao, Y., Sato, T., Birks, H. J. B., Boomer, I., Chen, J., An, C., & Wunnemann, B. 2008. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 27: 351–364. https://doi.org/10.1016/ j.quascirev.2007.10.017.

Cheng, H, Edwards, R., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X., Li, X., & Kong, X. 2016a. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534(7): 609–640.

Cheng, H., Spötl, C., Breitenbach, S. F. M., Sinha, A., Wassenburg, J. A., Jochum, K.P., Scholz, D., Li, X., Yi, L., Peng, Y., Lv, Y., Zhang, P., Votintseva, A., & Loginov, V., 2016b. Climate variations of Central Asia on orbital to millennial timescales. Scientific Reports, 5: 36975. DOI: 10.1038/ srep36975. PMID: 27833133; PMCID: PMC5105073.

Cheng, J., Wu, H., Chen, H., Lu, H., Liu, Z., Gu, P., Wang, J., Zhao, C., & Li, Q. 2021. Vegetation feedback causes delayed ecosystem response to East Asian Summer Monsoon Rainfall during the Holocene. Nature Communications. https:// doi.org/10.1038/s41467-021-22087-2.

Chhin, R., & Yoden, S. 2018. Ranking CMIP5 GCMs for model ensemble selection on regional scale: case study of the Indochina Region. Journal of Geophysical Research: Atmospheres, 123(17): 8949–8974.

Dallmeyer, A. and Claussen, M., 2011. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate. Biogeosciences, 8: 1499-1519. 10.5194/bg-8- 1499-2011.

Desai, A. R., Austin, J. A., Bennington, V., & Mckinley, G. A. 2009. Stronger winds over a large lake in response to weakening air-to-lake temperature gradient. Nature Geoscience, 2(12): 855–858.

Ding, Y., & Chan, J. C. L. 2005. The East Asian summer monsoon : an overview. Meteorog. Atmos. Phys, 142: 117–142. https://doi.org/doi.org/10.1007/ s00703-005-0125-z.

Emile-Geay, J., Cobb, K. M., Carré, M., Braconnot, P., Leloup, J., Zhou, Y., Harrison, S. P., Corrège, T., Mcgregor, H. V, Collins, M., Driscoll, R., Elliot, M., Schneider, B., & Tudhope, A. 2015. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nature Geoscience, 1–7. https://doi.org/10.1038/ ngeo2608.

Hewitt, C. D., & Mitchell, J. F. B. 1996. GCM Simulations of Climate of 6 kyr BP: Mean

Changes and Interdecadal Variability. Journal of Climate, 9: 3505–3529.

[Accessed at 20 August 2021].

[Accessed at 4 May 2022].

JAMSTEC, AORI, & NIES. 2015. MIROC-ESM model output prepared for CMIP5 midHolocene, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/10.1594/ WDCC/CMIP5.MIMEmh. https://www.wdc- climate.de/ui/ accessed at 2021-08-20.

Jeffrey, S., Rotstayn, L., Collier, M., Dravitzki, S., Hamalainen, C., Moeseneder, C., Wong, K., & Syktus, J. 2016. CSIRO-Mk3-6-0 model output prepared for CMIP5 midHolocene (Version 2015), served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/ 10.1594/WDCC/CMIP5.CQMKmhv2015. https:// www.wdc-climate.de/ui/ accessed at 2021-08-20.

Jiang, D., Tian, Z., & Lang, X. 2013. Mid-Holocene net precipitation changes over China : model e data comparison. Quaternary Science Reviews, 82: 104–120. https://doi.org/10.1016/ j.quascirev.2013.10.017.

Joussaume, S., Taylor, K. E., Braconnot, P., Mitchell, J. F. B., Kutzbach, J. E., Harrison, S. P., Prentice, I. C., Broccoli, A. J., Abe-Ouchi, A., Bartlein, P. J., Bonfils, C., Dong, B., Guiot, J., Henerich, K., Hewitt, C. D., Jolly, D., Kim, J. W., Kislov, A., Kitoh, A., Wyputt, U. 1999. Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophysical Research Letters, 26(7): 859–862.

Jungclaus, J., Giorgetta, M., Reick, C., Legutke, S., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Fischer, N., Glushak, K., Gayler, V., Haak, H., Hollweg, H.-D., Kinne, S., Kornblueh, L., Matei, D., Mauritsen, T., Mikolajewicz, U., Müller, W., Stevens, B. 2012. CMIP5 simulations of the Max Planck Institute for Meteorology (MPI-M) based on the MPI-ESM-P model: The midHolocene experiment, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://www.wdc- climate.de/ui/ accessed at 2021-08-20.

LASG, Institute of Atmospheric Physics, C. A. of S. (IAP-L. 2015. FGOALS-g2 model output prepared for CMIP5 midHolocene, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/10.1594/WDCC/ CMIP5.LSF2mh. https://www.wdc-climate.de/ui/ accessed at 2021-08-20.

Li, T., Chang, C., & Wang, B. 2001. On the relationship between Indian Ocean sea surface temperature and Asian Summer Monsoon. Geophysical Research Letters, 28(14): 2843–2846.

Mahowald, N. M., Yoshioka, M., Collins, W. D., Conley, A. J., Illmore, D. W., & Coleman, D. B. 2006. Climate response and radiative forcing from mineral aerosols during the last glacial maximum, pre‐industrial, current and doubled‐carbon dioxide climates. Geophysical Research Letters, 33(20): 1- 4.

NASA Goddard Institute for Space Studies (NASA/ GISS). 2014. NASA-GISS: GISS-E2-R model output prepared for CMIP5 mid-Holocene, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/10.1594/ WDCC/CMIP5.GIGRmh. https://www.wdc- climate.de/ui/ accessed at 2021-08-20.

Ohgaito, R. & Abe-Ouchi, A., 2007. The role of ocean thermodynamics and dynamics in Asian summer monsoon changes during the mid-Holocene. Climate Dynamic, 29: 39-50. 10.1007/s00382- 006-0217-6.

Otto-Bliesner, B. 2014. CCSM4 coupled simulation for CMIP5 with mid-Holocene conditions, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/10.1594/ WDCC/CMIP5.NRS4mh. https://www.wdc- climate.de/ui/ accessed at 2021-08-20.

Polanski, S., Rinke, A., Dethloff, K., Lorenz, S. J., Wang, Y., & Herzschuh, U. 2012. Simulation and comparison between mid-Holocene and Pre- Industrial Indian summer monsoon circulation using a regional climate model. The Open Atmospheric Science Journal, 6: 42–48.

Rao, Z., Jia, G., Li, Y., Chen, J., Xu, Q., & F., C. 2016. Asynchronous evolution of the isotopic composition and amount of precipitation in north China during the Holocene revealed by a record of compound-specific carbon and hydrogen isotopes of long-chain n-alkanes from an alpine lake. Earth and Planetary Science Letters, 466: 68–76. https:// doi.org/10.1016/j.epsl.2016.04.027.

Rawat, V., Rawat, S., Srivastava, P., Negi, P. S., Prakasam, M., & Kotlia, B.S. 2021. Middle Holocene Indian summer monsoon variability and its impact on cultural changes in the Indian subcontinent. Quaternary Science Reviews, 255(2021).https://doi.org/10.1016/ j.quascirev.2021.106825.

Ren, X., Sha, Y., Shi, Z., & Liu, X. 2021. Response of summer extreme precipitation over East Asia during the mid-Holocene versus future global warming. Global and Planetary Change, 197: 103–398.

Schneider, T, Bischoff, T., & Haug, G. H. 2014. Migrations and dynamics of the intertropical convergence zone. Nature, 513(7516): 45–53.

Tao, W., Huijun, W., & Dabang, J. 2010. Mid-Holocene East Asian summer climate as simulated by the PMIP2 models. Palaeogeography, Palaeoclimatology, Palaeoecology, 288(1–4): 93– 102. https://doi.org/10.1016/j.palaeo.2010.01.034.

Wang, B., & Fan, Z. 1999. Choice of South Asian Summer Monsoon Indices. Bulletin of the American Meteorological Society, 80(4): 629–638.

Wang, B., R, Wu., K-M, Lau. 2001. Inter Annual variability of Asian summer monsoon: contrast between the Indian and western North Pacific-East Asian monsoon. Journal of Climate,14: 4073- 4090.

Wen, R., Xiao, J., Chang, Z., Zhai, D., Xu, Q., Li, Y., Itoh, S., & Lomtatidze, Z. 2010. Holocene climate changes in the mid-high-latitude-monsoon margin re fl ected by the pollen record from Hulun Lake ,

northeastern Inner Mongolia. Research, 73(2): 293–303. 10.1016/j.yqres.2009.10.006.

Quaternary

https://doi.org/

Wohlfahrt, J., Harrison, S. P., & Braconnot, P. 2004. Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene. Climate Dynamics, 22: 223–238.

Wu, T., & Xin, X. 2015. bcc-csm1-1 model output prepared for CMIP5 midHolocene experiment, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/ 10.1594/WDCC/CMIP5.BCB1mh. https:// www.wdc-climate.de/ui/ accessed at 2021-08-20.

Xiao, J., Chang, Z., Wen, R., Zhai, D., Itoh, S., & Lomtatidze, Z. 2009. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia , China. Holocene, 19: 899–908.

Yafeng, S., Zhaozheng, K., Sumin, W., Lingyu, T., Fubao, W., Tandong, Y., Xitao, Z., Peiyuan, Z., & Shaohua, S. 1993. Mid-Holocene climates and environments in China. Global and Planetary Change, 7(1–3): 219–233.

Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Tanaka, T., Shindo, E., Tsujino, H., Deushi, M., Mizuta, R., Yabu, S., Obata, A., Nakano, H., Koshiro, T., Ose, T., & Kitoh, A. 2015. MRI-CGCM3 model output prepared for CMIP5 midHolocene, served by ESGF. World Data Center for Climate (WDCC) at DKRZ. https://doi.org/https://doi.org/10.1594/ WDCC/CMIP5.MRMCmh. https://www.wdc- climate.de/ui/ accessed at 2021-08-20.

Zhao, Y., Braconnot, P., Marti, O., Harrison, S. P., Hewitt, C., Kitoh, A., & Weber, S. L. 2005. A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene. Climate Dynamics, 25(7–8): 777–800. https:// doi.org/10.1007/s00382-005-0075-7.

Zheng, B., Wu, J., He, Y., & Yu. 2013. The East Asian Summer Monsoon at mid-Holocene: results from PMIP3 simulations. Climate Past, 9: 453–466. https://doi.org/10.5194/cp-9-453-2013.




DOI: http://dx.doi.org/10.32693/bomg.37.1.2022.762