Seabed Characterization through Image Processing of Side Scan Sonar Case Study: Bontang and Batam

Subarsyah Subarsyah, Lukman Arifin


Acoustic waves propagate through a medium meet the Snell’s Law, its energy is reflected and some are scattered back at certain angle. The Side Scan Sonar (SSS) methods use this principle to identify seabed character. The intensity of the backscatter greatly depends on the morphology and sediments texture or rocks distributed on seabed.
The intensity of backscatter waves is a representation of the morphology, sediments texture, and types of rock that distributed on the seabed, therefore it is possible to estimate sedimentary texture and identify the presence of rocks or coral reefs based on this information. In this publication authors estimate sediments texture, rocks or coral reefs based on backscatter intensity through the image processing on the Side Scan Sonar (SSS) image. Intensity will be converted into pixel values on the image with range value 1-255 (gray scale image) and entropy values which are statistical measures of randomness. Entropy value is maximum when most of pixel value image is in the middle of the colour spectrum range (between very dark to very bright), in contrast, it is minimum when pixel value is in the spectrum of very dark or very bright. Based on both parameters, classification is conducted. The classification is carried out on the SSS image at Bontang and Batam that have very different seabed characters.
The classification results using an image processing shows that the distribution of sediment textures consist of 4 (four) classes for either Batam or Bontang. In the Bontang area, very fine sediments were identified which are associated with low value of both intensity and entropy - dark zones in gray scale images, and coarse sediments associated with high value of both intensity and entropy - bright zone in the gray scale image. Similar characteristic is observed in Batam area, which are identified fine sediment (associated to low intensity) - coarse sediments (high intensity). In contrast to Bontang, in Batam the entropy exhibit the opposite value, high value are correlated to fine sediment and vice versa. This might be due to the presence of rocks and sedimentary structures.

Keywords: Side Scan Sonar, Intensity, Backscatter and entropy.

Gelombang akustik sebagian besar energinya dipantulkan memenuhi prinsip snellius dan sebagian kecil dihamburkan balik dengan sudut. Metode Side Scan Sonar (SSS) memanfaatkan prinsip hambur-balik gelombang untuk mengidentifikasi permukaan dasar laut. Intensitas gelombang dari karakter hambur-balik akan sangat tergantung morfologi dan tekstur sedimen atau batuan dari permukaan dasar lautnya.
Intensitas gelombang hambur-balik merupakan representasi dari morfologi, tekstur sedimen, dan jenis batuan yang tersebar di permukaan dasar laut, sehingga sangat memungkinkan untuk melakukan estimasi tekstur sedimen dan identifikasi keberadaan batuan maupun terumbu karang berdasarkan informasi tersebut. Pada publikasi ini akan dilakukan estimasi tekstur sedimen atau batuan berdasarkan intensitas hambur-balik melalui image yang dihasilkan oleh Metode Side Scan Sonar (SSS). Intensitas akan dikonversi ke dalam nilai pixel dalam image dengan rentang nilai 1-255 (gray scale image) dan nilai entropi yang merupakan ukuran statistik ketidakteraturan dari image. Entropi akan maksimum ketika nilai pixel kebanyakan di tengah dari rentang spektrum warna dan sebaliknya akan minimum ketika nilai pixelnya berada di spektrum warna sangat gelap atau sangat terang. Berdasarkan kedua parameter tersebut, kemudian dilakukan klasifikasi. Klasifikasi dilakukan pada data SSS Bontang dan Batam yang memiliki karakter permukaan dasar laut yang sangat berbeda.
Hasil klasifikasi dengan image processing memperlihatkan pola sebaran tekstur sedimen masing-masing terdiri dari 4 (empat) kelas baik untuk Batam atau Bontang. Pada area Bontang teridentifikasi sedimen sangat halus yang berasosiasi dengan intensitas dan entropy rendah - zona gelap pada gray scale image dan sedimen kasar yang berasosiasi dengan intensitas dan entropy tinggi - zona terang pada gray scale image. Karakter yang sama juga teramati pada area Batam, yaitu teridentifikasi sedimen halus (berasosiasi dengan intensitas rendah) - sedimen kasar (intensitas tinggi). Namun, berbeda dengan di Bontang, di Batam nilai entropi menunjukkan nilai yang sebaliknya, yaitu nilai tinggi berkorelasi dengan sedimen halus, dan sebaliknya. Hal ini diperkirakan akibat keberadaan batuan dan struktur sedimen.

Kata Kunci: Side Scan Sonar, Intensitas, Hambur balik dan Entropi.


Side Scan Sonar; Intensity;Backscatter;entropy

Full Text:



Amos C. L., Kassem, H. and Friend, P. L., 2017. Ripple Marks. Encyclopedia of Coastal Science. Springer International Publishing AG.

Baas J.H., 1978. Ripple, ripple mark, ripple structure. In: Middleton, G., Church, M.J., Coniglio, M., Hardie, L.A., Longstaffe, F.J. (Eds.), Encyclopedia of Sediments and Sedimentary Rocks. Encyclopedia of Earth Science Series. Springer, Dordrecht.

Björn, E., Frederick, C., Huynh, Q., & Zhou, H. 2017. Seafloor identification in sonar imagery via simulations of Helmholtz equations and discrete optimization. Journal of Computational Physics, 338: 477-492.

Blondel P., 2010. The Handbook of Sidescan Sonar. Springer Berlin Heidelberg, Berlin, Heidelberg.

Burguera, A., Oliver, G., 2015. Building High Resolution Maps of Large Subsea Areas using Side-Scan Sonar. Proceedings of the XXXVI Automation Conference, September 2 - 4, 2015. Bilbao.

Chang, Y.C., Hsu, S.K., and Tsai, C.H., 2010. Sidescan Sonar Image Processing: Correcting Brightness Variation And Patching Gaps. Journal of Marine Science and Technology, 18(6): 785-789

Cervenka, P. and de Moustier, C. 1993. Sidescan Sonar Image Processing Techniques. IEEE Journal of Oceanic Engineering, 18(2):108-122.

Chesapeake Technology. Inc, 2017. SonarWiz Seabed Characterization User Guide, California. USA

Chesterman, W.D., Clynick, P.R., and Stride, A.H., 1958. An Acoustic Aid to Sea Bed Survey Acustica, 8: 285-290.

Daniel, S., Leannec, F., Roux, C., Solaiman, B., and Maillard, E. P., 1998. Side-scan sonar image matching. IEEE Journal of Oceanic Engineering, 23(3): 245–259.

El-Owny, H.B.M., 2013. Edge Detection in Gray Level Images Based on Non-Shannon Entropy. International Journal on Computer Science and Engineering (IJCSE,) 5(2): 932-939.

Fakiris, E., and Papatheodorou, G., 2009. SonarClass : Matlab Toolbox for The Classification of Side Sonar Imagery Using Local Textural and Reverberational Characteristics. Proceedings of 2nd International Cnference and Exhibition on Underwater Acoustics Measurenment.

Kusnama, Sutisna, K., Amin, T.C., Koesoemadinata, S., Sukardi, Hermanto B., 1994. Geological Map of Tanjungpinang Sheet. Bandung: Center for Geological Research and Development.

Moreno, D., Burguera, A. and Oliver, G., 2014. SSS-SLAM: An Object Oriented Matlab Framework for Underwater SLAM using Side Scan Sonar. Proceedings of the XXXV Automation Conference, September 3 - 5, 2014. Valencia.

Sukardi, Supriatna, S., and Rustandi, E., 1995. Geological Map of Samarinda Sheet. Bandung: Center for Geological Research and Development.

Schwartz, M. O., Rajah, S. S., Askury, A. K., Putthapiban, P., and Djaswadi, S., 1995. The Southeast Asia Tin Belt. Earth Science Review, 38 (1995): 95-293.

Tamsett, D. 1993. Sea-Bed Characterisation and Classification from the Power Spectra of Side-Scan Sonar Data, UK. Marine Geophysical Researches, 15:43 - 64.

Zhao, J., Shang, X. and Zhang, H., 2017. Reconstructing Seabed Topography from Side-Scan Sonar Images with Self-Constraint. Remote Sensing, 10, 201; doi:10.3390.