Foraminiferal Analysis Related to Paleoceanographic Changes of Arafura Sea and Surrounding During Holocene

Luli Gustiantini, Swasty Aninda Piranti, Rina Zuraida, Sangmin Hyun, Duddy A.S. Ranawijaya, F.X. Harkinz Hendro Prabowo


Arafura Sea is located between Papua and Australia as a part of Sahul Shelf. It is strongly influenced by ITF, ITCZ replacement, monsoon, and ENSO circulation that interplay with local mechanism. To understand the paleoceanographic parameter changes during Holocene, we conducted foraminiferal quantitative analysis from a 152 cm length sediment core (Aru–07), in every 10 cm interval. This sediment core was retrieved from 134o00’33.6” E, 5o55’51.59” S, by RV Geomarin 3 belongs to Marine Geological Institute. Geochronology of the sediment was reconstructed based on 2 AMS 14C age dates, analyzed on organic samples. We identified 129 species of benthic and 24 species of planktonic foraminifera that is dominated by planktonic specimens with average of 53.14%. Predominant species are Globigerina bulloides (16.16%), Globigerinoides ruber (11.18%), and Neogloboquadrina dutertrei (5.65%). Benthic type is dominated by genera Bolivina, Bulimina, and Uvigerina by 25.86% (average). This might suggest eutrophic condition associated with carbon-rich or low oxygen level (dysoxic) condition. Single linkage cluster analysis revealed 3 paleoenvironmental zones, are: Zone I: older than 3.9 kyr BP, characterized by depleted oxygen level and nutrient enrichment compared to that of younger zone. Zone II: 3.9 – 2 kyr BP, characterized by oxygen content enrichment and deeper thermocline layer, related to the sea level rise during more neutral or La Niña like condition. Zone III: younger than 2 kyr BP, represent shallower thermocline layer, higher productivity which might be related to upwelling, and dysoxic condition. Sea level might be declined that related to more El Niño like condition.
Keywords: Paleoceanographic changes, upwelling, foraminiferal analysis, Arafura Sea

Laut Arafura berlokasi di antara Papua dan Australia sebagai bagian dari Paparan Sahul. Kondisi iklim sangat dipengaruhi oleh ITF, perpindahan ITCZ, monsun, dan ENSO yang berinteraksi dengan mekanisme lokal. Untuk memahami perubahan parameter oseanografi selama Holosen, kami melakukan analisis kuantitatif mikrofauna foraminifera, yang dilakukan terhadap sebuah bor sedimen laut sepanjang 152 cm (Aru–07) pada interval setiap 10 cm. Bor sedimen bawah laut ini telah diambil pada posisi 134o00’33.6” BT, 5o55’51.59” LS, menggunakan kapal penelitian Geomarin 3, Pusat Penelitian Geologi Kelautan. Geokronologi sedimen berdasarkan 2 radiocarbon dating, dianalisis dari sampel organik pada sedimen. Teridentifikasi 129 spesies bentik dan 24 spesies plangtonik yang didominasi oleh plangtonik dengan persentase rata-rata 53.14%. Foraminifera Jenis–jenis yang dominan antara lain Globigerina bulloides (16.16%), Globigerinoides ruber (11.18%), dan Neogloboquadrina dutertrei (5.65%). Sedangkan jenis bentik didominasi oleh genus Bolivina, Bulimina, dan Uvigerina, dengan persentase rata–rata 25.86%. Hal tersebut kemungkinan menunjukkan kondisi eutropik yang berasosiasi dengan kondisi kaya karbon dan rendah level oksigen (disoxic). Analisis cluster single linkage menunjukkan tiga zona utama, yaitu: Zona I: lebih tua dari 3.9 kyr BP, dicirikan oleh relatif rendahnya kandungan oksigen dan lebih kaya kandungan nutrien. Zona II: 3.9 – 2 kyr BP, dicirikan oleh meningkatnya kandungan oksigen, dan mendalamnya lapisan termoklin, berkaitan dengan meningkatnya muka air laut ketika kondisi netral atau kondisi seperti La Niña. Zona III: lebih muda dari 2 kyr BP, merupakan zona dengan kondisi lapisan termoklin yang mendangkal, produktifitas meningkat yang kemungkinan berkaitan dengan upwelling, dan kondisi disoxic. Muka air laut kemungkinan turun, berasosiasi dengan kondisi seperti El Niño.
Kata kunci: Perubahan paleoseanografi, upwelling, analisis foraminifera, Laut Arafura


Paleoceanographic changes;upwelling; foraminiferal analysis; Arafura Sea

Full Text:



Alongi, D.M. (editor), Edyvane, K., do Ceu Guterres, M.O., Pranowo, W.S., Wirasantosa, S. and Wasson, R., 2011. Biophysical profile of the Arafura and Timor Seas. Report prepared for the Arafura Timor Seas Ecosystem Action (ATSEA) Program. 32p.

Baohua, L., Zhimin, J., and Wang, P., 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the Southern Okinawa Trough during the last 20,000 years, Marine Micropaleontology, 32: 59-69.

Barmawidjaja, D.M., de Jong, A.F.M., van der Borg, K., van der Kaars, W.A., and Zachariasse, W.J., 1989. Kau Bay, Halmahera, a Late Quaternary paleoenvironmental record of a poorly ventilated basin, Netherlands Journal of Sea Research, 24: 591-605.

Barmawidjaja, D.M., Rohling, E.J., van der Kaars, W.A., Grazzini, C.V., and Zachariasse, W.J., 1993. Glacial conditions in the northern Molucca Sea region (Indonesia), Palaeogeography, Palaeoclimatology, Palaeoecology, 101: 147-167.

Beaufort, L., van der Kaars, S., Bassinot, F., and Moron, V., 2010. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept, Climate of the Past, 6: 695–706.

Bolli, H.M., Saunders, J.B., and Perch–Nielsen, K., 1985. Plankton stratigraphy, I. Cambridge University Press, Cambridge. 328p.

Boltovskoy, E. and Wright, R., 1976. Recent foraminifera, Dr. W. Junk, The Hague, Boston, 515p.

Cane, M.A. and Molnar, P., 2001. Closing of the Indonesian seaway as a precursor to East African aridification around 3-4 million years ago, Nature, 411: 157-162.

Currie, L.A., 2004. The remarkable metrological history of radiocarbon dating [II], Journal of Research of the National Institute of Standards and Technology, 109: 185-217.

Ding, X., Bassinot, F., Guichard, F., Li, Q.Y., Fang, N.Q., Labeyrie, L., Xin, R.C., Adisaputra, M.K., and Hardjawidjaksana, K., 2006. Distribution and ecology of planktonic foraminifera from the seas around the Indonesian Archipelago, Marine Micropaleontology, 58: 114– 134.

Drinia, H., Antonarakou, A., and Dermitzakis, M., 2003. Planktonic foraminiferal ecozones: response of the pelagic environment to palaeoclimatic changes in the Eastern Mediterranean Sea, Mediterranean Marine Science, 4 (2): 21-38.

Ganssen, G., Troelstra, S.R., Faber, B., Van der Kaars, W.A., and Situmorang, M., 1989. Late Quaternary palaeoceanography of the Banda Sea, Eastern Indonesian piston cores (Snellius-II Expedition, Cruise G5), Netherlands Journal of Sea Research, 24 (4): 491-494.

Gordon, A.L., 2005. Oceanography of the Indonesian Seas and their throughflow, Oceanography, 18 (4): 14 – 27.

Hall, R., 1996. Reconstructing Cenozoic SE Asia, in Hall, R. and Blundell, D.J., eds., Tectonic Evolution of SE Asia, Geological Society of London Special Publication, 106: 153–184.

Harahap, B.H., 2012. Tectonostratigraphy of the Southern Part of Papua and Arafura Sea, Eastern Indonesia, Indonesian Journal of Geology, Vol. 7 (3): 167-187.

Holbourn, A., Henderson, A.S., and MacLeod, N., 2013. Atlas of benthic foraminifera. Wiley-Blackwell, A John Wiley & Sons, Ltd., Publication, Natural History Museum, London, 642p.

Ilahude, A.G., Komar, and Mardanis, 1990. On the hydrology and productivity of the Northern Arafura Sea, Netherlands Journal of Sea Research, 25 (4): 573-583.

Jongsma, D., 1974. Marine Geology of the Arafura Sea, Bulletin 157, Department of Mineral and Energy, Bureau of Mineral Resources, Geology and Geophysics, Australian Government Publishing Service, Canberra. 73p.

Jorissen, F.J., 1987. The distribution of benthic foraminifera in the Adriatic Sea, Marine Micropaleontology, 12: 21-48.

Kuhnt, W., Holbourn, A., Hall, R., Žuvela, M., and Käse, R., 2004. Neogene History of the Indonesian Throughflow, Book Series, American Geophysical Union, 10.1029/Series#LettersChapter#.

Langton, S.J., Linsley, B.K., Robinson, R.S, Rosenthal, Y., Oppo, D.W., Eglinton, T.I., Howe, S.S., Djajadihardja, Y.S., and Syamsudin, F., 2008. 3500 yr record of centennial-scale climate variability from the Western Pacific Warm Pool, The Geological Society of America, 36 (10): 795–798.

Linsley, B.K., Rosenthal, Y., and Oppo, D.W., 2010. Holocene evolution of the Indonesian Throughflow and the Western Pacific Warm Pool, Nature Geoscience, 3: 578 – 585.

Loeblich, Jr., A.R. and Tappan, H., 1994. Foraminifera of the Sahul Shelf and Timor Sea, Cushman Foundation Special publication, 31, Cushman Foundation for Foraminiferal Research. Cambridge, U.S.A., 661p.

Martins, M.V.A., Quintino, V., Tentúgal, R.M., Frontalini, F., Miranda, P., Laut, L.L.M., Martins, R., and Rodrigues, A.M., 2015. Characterization of bottom hydrodynamic conditions on the Central Western Portuguese Continental Shelf based on benthic foraminifera and sedimentary parameters, Marine Environmental Research, 109: 52-68.

Mayer, B., Damm, P.E., Pohlmann, T., and Rizal, S., 2010. What is driving the ITF? An illumination of the Indonesian Throughflow with a numerical nested model system, Dynamics of Atmospheres and Oceans, 50: 301–312.

Mohtadi, M., Steinke, S., Groeneveld, J., Fink, H.G., Rixen, T., Hebbeln, D., Donner, B., and Herunadi, B., 2009. Low-latitude control on seasonal and interannual changes in planktonic foraminiferal flux and shell geochemistry off South Java: A sediment trap study, Paleoceanography, 24: 1–20. doi:10.1029/2008PA001636.

Moore, T.S. II, Marra, J., and Alkatiri, A., 2003. Response of the Banda Sea to the southeast monsoon. Marine Ecology Progress Series, vol. 261: 41–493.

Newton, A., Thunell, R., and Stott, L., 2011. Changes in the Indonesian Throughflow during the past 2000 yr, Geology, Vol. 39 (1): 63–66.

Postuma, J., 1971. Manual of planktonic foraminifera. The Hague, Netherlands. 420p.

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., and van der Plicht, J., 2013. IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years calBP, Radiocarbon, 55 (4): DOI: 10.2458/azu_js_rc.55.16947.

Roberts, G., Ramsden, C., Christoffersen, T., Wagimin, N., and Muzaffar, Y., 2011. East Indonesia: Plays and Prospectivity of the West Aru, Kai Besar and Tanimbar Area - Identified from New Long Offset Seismic Data, expanded abstract presentation at AAPG Annual Convention and Exhibition, Houston, Texas, USA, April 10-13, 2011.

Sijinkumar, A.V., Nagender Nath, B., Possnert, G., and Aldahan, A., 2011. Pulleniatina minimum events in the Andaman Sea (NE Indian Ocean): implications for winter monsoon and thermocline changes, Marine Micropaleontology, 81: 88–94.

Spooner, M.I., Barrows, T.T., de Deckker, P., and Paterne, M., 2005. Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon, Global and Planetary Change, 49: 28– 46.

Stuiver, M. and Reimer, P.J., 1993. Extended 14C database and revised CALIB radiocarbon calibration program, Radiocarbon, 35: 215-230.

Stuiver, M., Reimer, P.J., and Reimer, R.W. 2018. CALIB 7.1 [WWW program] at, accessed 2018-4-10.

Tedesco, T., Thunell, R., Astor, Y., and Muller-Karger, F., 2007. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: Seasonal and interannual variations, Marine Micropaleontology, 62: 180–193.

Troelstra, S.R., and Kroon, D., 1989. Note on extant planktonic foraminifera from the Banda Sea, Indonesia (Snellius-II Expedition, Cruise G5), Netherlands Journal of Sea Research, 24 (4): 459-463.

Van Marle, L.J., 1988. Bathymetric distribution of benthic foraminifera on the Australian-Irian Jaya continental margin, Eastern Indonesia, Marine Micropaleontology, 13: 97-152.

Williams, L.W., Forman, D.J., and Hawkins, P.J., 1974. Sedimentary basins of the Sahul Shelf, Record 73/74, Bureau of Mineral Resources, Geology and Geophysics, Department of Minerals and Energy 11p.

Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters. University of California, NAGA Report, 2: 195p.