Inhibition Effects of Jakarta Bay Sediments to the Growth of Marine Diatom (Chaetoceros Gracilis)

Triyoni Purbonegoro, Muhammad Reza Cordova, Rachma Puspitasari, Dwi Hindarti

Abstract


Jakarta Bay coastal ecosystem is known suffered from water pollution and habitat degradation. Solid and fluid waste from households and several industrial areas flow and ended up in the bay. Ecotoxicological studies are needed to assess the effects of pollutant on marine organism, including phytoplankton as the primary producer. Therefore chemical analysis and toxicity test were performed to investigate the impact of Jakarta Bay Sediments to marine diatoms Chaetoceros gracilis. Heavy metals concentration especially Cu, Pb, Cd, and Hg in the sediments were lower than in previous studies. It could be related to the stricter environmental regulations which started enforced at the end of 1990s. Meanwhile, PAH and pesticide were higher than in previous studies. Increasing activities and maritime traffic in surrounding area of Tanjung Priok Port area and most likely comes from other adjacent harbors (Muara Baru, Muara Angke, and Marina Ancol harbor) and the massive usage of the pesticide compound in the households of the Jakarta City area were suspected to be the reasons. Estuaries area and locations <10 km were identified and predicted would produce harmful effects since the concentration of Zn and Hg in those area exceeded Probable Effects Level (PEL) of Sediment Quality Guidelines (SQG). The growth responses of Chaetoceros gracilis were varied greatly. Most of the sites (24 from 31 sites) showed inhibition effects on the growth of diatoms, ranged from 1.75-35.33 % (17.75±9.59 %) relative to control, with the highest inhibition value was at Cengkareng Drain estuary (M2). The relationship between the concentration of contaminants and the inhibition response could not be clearly explained, however, there is an assumption that low concentrations of some heavy metals were suspected to give adverse effects on diatom’s growth.
Keywords: sediment, toxicity, marine diatoms, Chaetoceros gracilis, Jakarta Bay

Ekosistem Teluk Jakarta dikenal mengalami pencemaran air dan degradasi habitat. Limbah cair dan padat berasal dari perumahan dan industri mengalir dan berakhir di teluk tersebut. Kajian ekotoksikologi diperlukan untuk mengetahui pengaruh pencemar terhadap organisme laut termasuk fitoplankton sebagai produsen primer. Analisis kimia dan uji toksisitas dilakukan untuk mengetahui dampak sedimen Teluk Jakarta terhadap diatom laut Chaetoceros gracilis. Konsentrasi logam berat terutama Cu, Pb, Cd, dan Hg dalam sedimen lebih rendah dari penelitian sebelumnya. Hal tersebut berkaitan dengan peraturan lingkungan ketat yang mulai diberlakukan pada akhir 1990-an. Namun demikian, konsentrasi PAH dan pestisida lebih tinggi dari penelitian sebelumnya. Hal tersebut diduga kuat akibat dari peningkatan aktivitas dan lalu lintas maritim di daerah sekitar Pelabuhan Tanjung Priok, juga kemungkinan besar berasal dari pelabuhan lain yang berdekatan (Muara Baru, Muara Angke, dan pelabuhan Marina Ancol) serta akibat penggunaan besar-besaran senyawa pestisida kegiatan rumah tangga di wilayah Kota Jakarta. Daerah dan lokasi estuaria <10 km diidentifikasi dan diprediksi akan menghasilkan efek berbahaya karena konsentrasi Zn dan Hg di area tersebut melebihi Probable Effects Level (PEL) dari Pedoman Kualitas Sedimen (SQG). Respon pertumbuhan diatom laut Chaetoceros gracilis sangat bervariasi. Sebagian besar stasiun (24 dari 31 stasiun) menunjukkan efek penghambatan pada pertumbuhan diatom, berkisar antara 1,75-35,33% (17,75 ± 9,59%) relatif terhadap kontrol, dengan nilai penghambatan tertinggi di muara Sungai Cengkareng (M2). Hubungan antara konsentrasi kontaminan dan respon penghambatan tidak dapat dijelaskan dengan lebih pasti namun terdapat asumsi konsentrasi rendah dari beberapa logam berat diduga memberikan efek buruk pada pertumbuhan diatom.
Kata Kunci: sedimen, toksisitas, diatom laut, Chaetoceros gracilis, Teluk Jakarta


Keywords


sediment; toxicity; marine diatoms; Chaetoceros gracilis; Jakarta Bay

Full Text:

PDF

References


Asean-Canada CPMS (Cooperative Programme on Marine Science). 1995. Phytoplankton growth test. In Protocol for sublethal toxicity tests using tropical marine organism. Asean-Canada Cooperative Programme on Marine Science Phase II. 14-20.

ASTM (American Society for Testing and Materials). 2006a. Standard guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing and for Selection of Samplers Used to Collect Benthic Invertebrates. In Annual Book of ASTM Standards. Section Eleven: Water and Environmental Technology. Volume 11.06: Biological effects and environmental fate; biotechnology. 506–598.

ASTM (American Society for Testing and Materials). 2006b. Standard Guide for Conducting Toxicity Tests with Microlagae. In Annual Book of ASTM Standards 2006. Section Eleven: Water and Environmental Technology. Volume 11.06 Biological effects and Environmental Fate; Biotechnology. 278–291.

Burton, G. A., 2002. Sediment quality criteria in use around the world. Limnology, 3, 65–75.

Cattaneo, A., Couillard, Y., Wunsam, S., and Courcelles, M., 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). Journal of Paleolimnology, 32(2): 163–175. https://doi.org/10.1023/B:JOPL. 0000029430.78278.a5

Duong, T. T., Morin, S., Herlory, O., Feurtet-Mazel, A., Coste, M., and Boudou, A., 2008. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquatic Toxicology, 90(1): 19–28. https://doi.org/10.1016/j.aquatox.2008.07.012

Dwiyitno, Dsikowitzky, L., Nordhaus, I., Andarwulan, N., Irianto, H. E., Lioe, H. N., Schwarzbauer, J., 2016. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia. Marine Pollution Bulletin, 110(2): 767–777. https://doi.org/10.1016/j.marpolbul.2016.01.034

Hindarti, D., Arifin, Z., Puspitasari, R., and Rochyatun, E., 2008. Sediment contaminant and toxicity in Klabat Bay, Bangka Belitung Province. Marine Research in Indonesia, 33 (2):203–212.

Hindarti, D., Darmayati, Y., Sulistijo, and Panggabean, M. G., 1999. Effects of Jakarta Bay Sediment on Green Mussel Larvae (Perna viridis) and Phytoplankton (Chaetoceros gracilis and Tetraselmis sp.). In I. G. et al. Watson (Ed.), ASEAN Marine Environmental Management: Towards Sustainable Development and Integrated Management of the Marine Environment in ASEAN. Proceedings of the 4th ASEAN-Canada Technical Conference on Marine Science (26-30 October, 1998), Langkawi, Malaysia. EVS Environment Consultants, North Vancouver and Department of Fisheries, Malaysia, 124-131

Hildebrand, M., 2008. Diatoms, biomineralization processes, and genomics. Chemical Reviews. 108: 4855-4874.

Hosono, T., Su, C.-C., Delinom, R., Umezawa, Y., Toyota, T., Kaneko, S., and Taniguchi, M., 2011. Decline in heavy metal contamination in marine sediments in Jakarta Bay, Indonesia due to increasing environmental regulations. Estuarine, Coastal and Shelf Science, 92: 297–306.

Koropitan, A. F., Ikeda, M., Damar, A., and Yamanaka, Y., 2009. Influences of physical processes on the ecosystem of Jakarta Bay: a coupled physical – ecosystem model experiment. ICES Journal of Marine Science, 66: 336–348.

Long, E., Field, L., and MacDonald, D., 1998. Predicting Toxicity in Marine Sediments With Numerical Sediment Quality Guidelines. Environmental Toxicology and Chemistry, 17 (4): 714–727.

Moisset, S., Tiam, S. K., Feurtet-Mazel, A., Morin, S., Delmas, F., Mazzella, N., and Gonzalez, P., 2015. Genetic and physiological responses of three freshwater diatoms to realistic diuron exposures. Environmental Science and Pollution Research, 22 (6): 4046–4055. https://doi.org/10.1007/s11356-014-3523-2

Moreno-Garrido, I., Hampel, M., Lubian, L., and Blasco, J., 2003. Sediment toxicity tests using benthic marine microalgae Cylindrotheca closterium (Ehremberg) Lewin and Reimann (Bacillariophyceae). Ecotoxicology and Environmental Safety, 54: 290–295. https://doi.org/10.1016/S0147-6513(02)00077-5

Munawar, M., and Munawar, I. F., 1987. Phytoplankton bioassays for evaluating toxicity of in situ sediment contaminants. Hydrobiologia, 149(1), 87–105. https://doi.org/10.1007/BF00048650

Pandey, L. K., Bergey, E. A., Lyu, J., Park, J., Choi, S., Lee, H., Han, T., 2017. The use of diatoms in ecotoxicology and bioassessment: Insights, advances and challenges. Water Research, 118: 39–58. https://doi.org/10.1016/j.watres.2017.01.062

PSEP (Puget Sound Estuary Protocols). 1995. Recommended guidelines for conducting laboratory bioassays on Puget Sound Sediments. U.S. Environmental Protection Agency Authority. Puget Sound Water Quality, Seattle. US.

Puspitasari, R., 2011. Uji toksisitas sedimen pesisir Cirebon terhadap pertumbuhan diatom planktonic Chaetoceros gracilis. Jurnal Segara, 7 (1): 57–64.

Puspitasari, R., and Hindarti, D., 2009. Korelasi antara logam berat dalam sedimen dan toksisitasnya terhadap diatom Chaetoceros gracilis di Teluk Klabat, Bangka. Oseanologi Dan Limnologi Di Indonesia, 35 (2): 131–149.

Puspitasari, R., and Lestari., 2014. Chaeoceros gracilis as a bioindicator of sediment quality. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 6 (1): 171–180.

Quinn, G., and Keough, M., 2002. Experimental design and data analysis for biologists. New York: Cambridge University Press. 1-553.

Schwarzbauer, J., Littke, R., and Weigelt, V., 2000. Identification of specific organic contaminants for estimating the contribution of the Elbe river to the pollution of the German Bight. Organic Geochemistry, 31: 1713–1731. https://doi.org/10.1016/S0146-6380(00)00076-0

Siregar, T. H., Priyanto, N., Putri, A. K., Rachmawati, N., Triwibowo, R., Dsikowitzky, L., and Schwarzbauer, J., 2016. Spatial distribution and seasonal variation of the trace hazardous element contamination in Jakarta Bay, Indonesia. Marine Pollution Bulletin, 110 (2): 634–646. https://doi.org/10.1016/j.marpolbul.2016.05.008

Sudaryanto, A., Monirith, I., Kajiwara, N., Takahashi, S., Hartono, P., Muawanah, Tanabe, S., 2007. Levels and distribution of organochlorines in fish from Indonesia. Environment International, 33 (6): 750–758. https://doi.org/10.1016/j.envint.2007.02.009

Sudaryanto, A., Takahashi, S., and Tanabe, S., 2007. Persistent Toxic Substances in the Environment of Indonesia. In A. Li, S. Tanabe, G. Jiang, J. P. Giesy, and P. K. S. Lam (Eds.), Developments in Environmental Science (7): 587–625. Elsevier. https://doi.org/10.1016/S1474-8177(07)07013-1

USEPA (United State Environmental Protection Agency). 1974. Method 245.5-Mercury In Sediment (Manual Cold Vapor Technique). U.S. Environmental Protection Agency (USEPA), USA. 1- 4

USEPA (United State Environmental Protection Agency). 1996. Method 3050B - Acid digestion of sediments, sludges, and soils. U.S. Environmental Protection Agency (USEPA) https://doi.org/10.1117/12.528651. 1-12

Williams, T., Rees, J., and Setiapermana, D., 2000. Metals and Trace Organic Compounds in Sediments and Waters of Jakarta Bay and the Pulau Seribu Complex, Indonesia. Marine Pollution Bulletin, 3: 277–285. http://dx.doi.org/10.1016/S0025-326X(99)00226-X




DOI: http://dx.doi.org/10.32693/bomg.33.2.2018.547