THERMOCLINE WATER TEMPERATURE GRADIENT AT THE INDONESIAN THROUGHFLOW PATHWAYS DURING LAST GLACIAL MAXIMUM (LGM)

Rima Rachmayani, Oktavira Dwi Demia Larasati, Marfasran Hendrizan


Abstract


This study aims to investigate the strength of the Indonesian Throughflow (ITF) during the Last Glacial Maximum (LGM) in comparison to the Pre-Industrial (PI) at the Makassar Strait, the Molucca Sea, and the Banda Sea, representing the pathways of the ITF. The analysis was performed based on the temperature distribution of the south (S) and north (N) thermocline gradients. Temperature data were obtained from the simulation of the Climate Community System Model, version 4 (CCSM4). The depth of the thermocline layer during the LGM and the PI period exhibits seasonal variability across the S-N stations. At Station 1, 2, and 3, the thermocline depth during the LGM ranges from 49 - 218 m (51 - 251 m), 55 - 250 m (69 - 254 m), and 48 - 238 m (48 - 218 m) in the south (north), respectively. The analysis of seasonal temperature variations in the thermocline layer in the three locations indicates that the ITF was significantly weakened both during the LGM and PI, indicated by the negative S-N Thermocline Water Temperature (TWT) gradient. The result suggests the southern part of each station is predominantly fresher compared to the northern part during these times. Additionally, it implies that the ITF is more robust in the eastern region (Banda Sea) during the LGM compared to the PI. This variation may relate to the intensity of seasonal local winds, mixing processes, and the remote influence of El Niño-like events, which could affect water transport along the pathway of the ITF.


Keywords


Thermocline Water Temperature; Indonesian Throughflow; Last Glacial Maximum; Makassar Strait; Molucca Sea; Banda Sea

Full Text:

PDF

References


Bradley, R.S., 1999. Paleoclimatology: Reconstructing Climates of the Quaternary. 2nd Edition, Academic Press, San Diego, 10p.

Brady, E.C., Otto-Bliesner, B.L., Kay, J.E., Rosenbloom, N., 2013. Sensitivity to Glacial Forcing in the CCSM4. American Meteorological Society, 26(6):1901-1925. https://doi.org/10.1175/JCLI-D-11-00416.1.

Brady, E.C., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., Zhu, J., 2019. The Connected Isotopic Water Cycle in the Community Earth System Model version 1. Journal of Advances in Modeling Earth Systems, 11:2547–2566. https://doi.org/10.1029/2019MS001663.

Briegleb, B.P., and Light, B., 2007. A Delta-Eddington Multiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model. University Corporation for Atmospheric Research, NCAR Technical Note 4721STR, 100 pp.

Danabasoglu, G., Bates, S.C., Briegleb, B.P., Jayne, S.R., Jochum, M., Large, W.G., Peacock, S., and Yeager, S.G., 2012a. The CCSM4 ocean component. Journal of Climate, 25:1361–1389. https://doi.org/10.1175/JCLI-D-11-00091.1.

Danabasoglu, G., Yeager, S.G., Kwon, Y.O., Tribbia, J.J., Phillips, A., and Hurrell, J.W., 2012b. Variability of the Atlantic Meridional Overturning Circulation in CCSM4. Journal of Climate, 25:5153–5172. https://doi.org/10.1175/JCLI-D-11-00463.1.

Deser, C., Phillips, A., Tomas, R., Okumura, Y., Alexander, M., Capotondi, A., Scott, J., Kwon, Y.O., Ohba, M., 2012. ENSO and Pacific Decadal Variability in the Community Climate System Model Version 4. Journal of Climate, 25:2622–2651.

Ding, X., Bassinot, F., and Guichard, F., fang, N.Q., 2013. Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum. Marine Micropaleontology, 101:115 – 126.

Fan, W., Jian, Z., Chu, Z., Dang, H., Wang, Y., Bassinot, F., Han, X., Bian, Y., 2018. Variability of the Indonesian Throughflow in the Makassar Strait over the Last 30 ka. Scientific Reports, 8:5678. https://doi.org/10.1038/s41598–018–24055–1.

Feng, M., Zhang, N., Liu, Q., Wijffels, S., 2018. The Indonesian throughflow, its variability and centennial change. Geoscience Letters 5, 3. https://doi.org/10.1186/s40562-018-0102-2.

Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.-L., Zhang, M., 2011. The Community Climate System Model Version 4. Journal of Climate, 24:4973–4991. doi:10.1175/2011JCLI4083.1.

Gordon, A. L., 2005. Oceanography of the Indonesian Seas and Their Throughflow. Oceanography, 18(4):14-27.

Gordon, A. L., Sprintall, J., Van Aken, H. M., Susanto, D., Wijffels, S., Molcard, R., Wirasantosa, S., 2010. The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2):115–128. https://doi.org/10.1016/j.dynatmoce.2009.12.

Hendrizan, M., Kuhnt, W., and Holbourn, A., 2017. Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr. Paleoceanography, 32:1054–1069. https://doi.org/10.1002/2016PA003030.

Holbourn, A., Kuhnt, W., Xu, J., 2011. Indonesian Throughflow variability during the last 140 ka: the Timor Sea outflow. Geological Society of London Special Publications, 355:283–303. https://doi.org/10.1144/SP355.14.

Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E., 2012. Improved Sea Ice Shortwave Radiation Physics in CCSM4: The Impact of Melt Ponds and Aerosols on Arctic Sea Ice. Journal of Climate, 25:1413–1430.

Hu, S., Zhang, Y., Feng, M., Du, Y., Sprintall, J., Wang, F., Hu, D., Xie, Q., Chai, F., 2019. Interannual to Decadal Variability of Upper–Ocean Salinity in the Southern Indian Ocean and the Role of the Indonesian Throughflow. Journal of Climate, 32: 6403–6421. https://doi.org/10.1175/JCLI–D–19–0056.1.

Hunke, E. C., and Lipscomb, W. H., 2010. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual, Version 4.1. Los Alamos National Laboratory. Tech. Rep. LA- CC-06-012, 76 pp.

Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J., 2021. The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations. Climate of the Past, 17(3):1065–1089.

Landrum, L., Holland, M.M., Schneider, D.P., and Hunke, E., 2012. Antarctic Sea Ice Climatology, Variability, and Late Twentieth-Century Change in CCSM4. Journal of Climate, 25:4817–4838. https://doi.org/10.1175/JCLI-D-11-00289.1.

Lauritzen, P. H., Mirin, A.A., Truesdale, J., Raeder, K., Anderson, J.L., Bacmeister, J., and Niele, R., 2012. Implementation of new diffusion/filtering operators in the CAM-FV dynamical core. International Journal of High Performance Computing Applications, 26:63–77.

Lawrence, P. J., and Chase, T. N., 2007. Representing a new MODIS consistent land surface in the Community Land Model (CLM3.0). Journal Geophysical Research, 112:G01023. https://doi.org/10.1029/2006JG000168.

Lee, S.K., Park, W., Baringer, M.O., Gordon, A.L., Huber, B., Liu, Y., 2015. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nature Geoscience, 8:445–449. https://doi.org/10.1038/ngeo2438.

Linsley, B.K., Rosenthal, Y., Oppo, D.W., 2010. Holocene evolution of the Indonesian Throughflow and the Western Pacific Warm Pool. Nature Geoscience, 3:578–583.

Meehl, G. A., and Coauthors, 2012. Climate System Response to External Forcings and Climate Change Projections in CCSM4. Journal of Climate, 25:3661–3683.

Neale, R. B., Richter, J. H., and Jochum, M., 2008. The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events. Journal of Climate, 21:5904–5924.

Pang, X., Bassinot, F., Sepulcre, S., 2021. Indonesian Throughflow variability over the last two glacial–interglacial cycles: Evidence from the eastern Indian Ocean. Quaternary Science Reviews, 256. https://doi.org/10.1016/j.quascirev.2021.106839.

Peltier, W. R. and Fairbanks, R. G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews, 25:3322–3337. https://doi.org/10.1016/j.quascirev.2006.04.010.

Rachmayani, R., Prange, M., Schulz, M., dan Ningsih, S. N., 2019. Climate Variability in Indonesia from 615 Ka to Present: First Insights from Low-Resolution Coupled Model Simulations. Die Erde, 150(4). https://doi.org/10.12854/erde-2019-428.

Richter, J. H., and Rasch, P. J., 2008. Effects of Convective Momentum Transport on the Atmospheric Circulation in the Community Atmosphere Model, version 3. Journal of Climate, 21:1487–1499.

Shen, C., Moore, J.C., Kuswanto, H., Zhao, L., 2023. The Indonesian Throughflow circulation under solar geoengineering. Earth Dynamics System, 14(6):1317–1332. https://doi.org/10.5194/esd-14-1317-2023.

Smith, R. D., and Coauthors, 2010. The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory Tech. Rep. LAUR-10-01853, 140 pp.

Sprintall, J., Wijffels, S.E., Molcard, R., Jaya, I., 2009. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. Journal Geophysical Research, 114:C07001. https://doi.org/10.1029/2008JC005257.

Talley, L., 2013. Closure of the Global Overturning Circulation Through the Indian, Pacific, and Southern Oceans: Schematics and Transports. Oceanography, 26:80–97. https://doi.org/10.5670/oceanog.2013.07.

Thornton, P., et al., 2007. Vulnerability, climate change and livestock: Research opportunities and challenges for poverty alleviation. SAT eJournal, 4:1-23. www.icrisat.org/journal/SpecialProject/sp7.pdf.

Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., Kawamura, H., 2008. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth Planet Science Letter, 273:152–162. https://doi.org/10.1016/j.epsl.2008.06.029.

Zhang, P., Xu, J., Holbourn, A., Kuhnt, W., Pei, R., Xiong, Z., Li, Ti., 2024. Precession-Driven Variations in the Indonesian Throughflow Thermocline and Its Implications on the Agulhas Leakage. Geophysical Research Letters, 51. https://doi.org/10.1029/2024GL110520.




DOI: http://dx.doi.org/10.32693/bomg.40.1.2025.937


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: