UPWELLING INFLUENCE ON ENVIRONMENTAL CHANGE AND SEDIMENTATION DYNAMICS FROM TRACE FOSSILS IN THE MOLUCCA SEA: IMPLICATIONS FOR SEDIMENT DATING

Taufan Wiguna, Rina Zuraida, Agus Saleh Atmadipoera, Fareza Sasongko Yuwono, Undang Hernawan, Vera Christanti, Nicolas Tournier, Adrianus Damanik, Hendrik Vogel, Sri Yudawati Cahyarini


Abstract


Bioturbation, the alteration of sediment layers by organism activities, plays a crucial role in shaping sedimentary environments. This process affects nutrient cycling, sediment stability, and habitat health, particularly in marine ecosystems like the Molucca Sea. Bioturbation can complicate age determination by disrupting the natural layering of sediments and potentially altering chronological records, which challenges the accuracy of dating methods. This study investigates bioturbation patterns and Zr/Rb ratios in sediment cores from the Molucca Sea to better understand past environmental conditions and assess the suitability of these sediments for age determination. Sediment samples were collected using a box corer from BUDEE22-29BC (within the upwelling region) and BUDEE22-57BC (outside the upwelling area). The cores were analyzed using CT scanning to identify bioturbation features, and the Bioturbation Index (BI) was applied to evaluate the intensity and impact of bioturbation on sediment dynamics. The Zr/Rb ratios were determined using an X-ray fluorescence (XRF) spectrometer, providing insights into grain size distribution. The results suggest the potential shifting of the upwelling center (BUDEE22-29BC) and variations in upwelling intensity (BUDEE22-57BC). Although Zr/Rb ratio shows that BUDEE22-29BC is a high-energy environment, as opposed to BUDEE22-57BC, both sites retain chronological integrity, making them suitable for paleoenvironmental and geochronological analysis.


Keywords


bioturbation; CT scan; paleoenvironment; Banggai; upwelling; BUDEE22

Full Text:

PDF

References


Alongi, D. M., Brinkman, R., Trott, L. A., da Silva, F., Pereira, F., and Wagey, T., 2013. Enhanced benthic response to upwelling of the Indonesian Throughflow onto the southern shelf of Timor-Leste, Timor Sea. Journal of Geophysical Research: Biogeosciences, 118(1): 158–170. https://doi.org/10.1029/2012JG002150.

Atmadipoera, A. S., Khairunnisa, Z., and Kusuma, D. W., 2018. Upwelling characteristics during El Nino 2015 in Maluku Sea. IOP Conference Series: Earth and Environmental Science, 176(1). https://doi.org/10.1088/1755-1315/176/1/012018.

Bakun, A., Black, B. A., Bograd, S. J., García-Reyes, M., Miller, A. J., Rykaczewski, R. R., & Sydeman, W. J., (2015). Anticipated Effects of Climate Change on Coastal Upwelling Ecosystems. Current Climate Change Reports, 1(2): 85–93. https://doi.org/10.1007/s40641-015-0008-4.

Bosworth, W. S., and Thibodeaux, L. J., 1990. Bioturbation: A facilitator of contaminant transport in bed sediment. Environmental Progress, 9(4): 211–217. https://doi.org/10.1002/ep.670090414.

Crimes, T. P., and Droser, M. L., 1992. Trace Fossils and Bioturbation: The Other Fossil Record. Annual Review of Ecology, Evolution, and Systematics, 23(23,): 339–360. https://doi.org/https://doi.org/10.1146/annurev.es.23.110192.002011.

Dypvik, H., and Harris, N., 2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr+Rb)/Sr ratios. Chemical Geology, 181: 131–146. https://doi.org/10.1016/S0009-2541(01)00278-9.

Fernández, D. E., and Pazos, P. J., 2012. Ichnology of Marginal Marine Facies of the Agrio Formation (Lower Cretaceous, Neuquén Basin, Argentina) at its Type Locality. Ameghiniana, 49(4): 505–524. https://doi.org/10.5710/AMGH.23.7.2012.439.

Frey, R. W., and Pemberton, S. G., 1985. Biogenic Structures in Outcrops and Cores. I. Approaches to Ichnology. Bulletin of Canadian Petroleum Geology, 33: 72–115. https://api.semanticscholar.org/CorpusID:130434650.

Gani, M. R., 2020. Clastic shorelines and deltas in 2020 In: N. Scarselli, J. Adam, D. Chiarella, D. G. Roberts, A. W. Balli (Editors), Regional Geology and Tectonics: Principles of Geologic Analysis. Elsevier B.V., Amsterdam: 343–364. https://doi.org/10.1016/B978-0-444-64134-2.00012-2.

Hülse, D., Vervoort, P., van de Velde, S. J., Kanzaki, Y., Boudreau, B., Arndt, S., Bottjer, D. J., Hoogakker, B., Kuderer, M., Middelburg, J. J., Volkenborn, N., Kirtland Turner, S., and Ridgwell, A., 2022. Assessing the impact of bioturbation on sedimentary isotopic records through numerical models. Earth-Science Reviews, 234, 104213. https://doi.org/https://doi.org/10.1016/j.earscirev.2022.104213.

Iskandar, M. R., Jia, Y., Sasaki, H., Furue, R., Kida, S., Suga, T., and Richards, K. J., 2023. Effects of High-Frequency Flow Variability on the Pathways of the Indonesian Throughflow. Journal of Geophysical Research: Oceans, 128(5): e2022JC019610. https://doi.org/10.1029/2022JC019610.

Löwemark, L., 2007. Importance and Usefulness of Trace Fossils and Bioturbation in Paleoceanography in 2007. In: W. Miller (Editor). Trace Fossils: Concepts, Problems, Prospects. Elsevier B.V., Amsterdam: 413–427. https://doi.org/10.1016/B978-044452949-7/50150-9.

Luo, M., Shi, G. R., Buatois, L. A., and Chen, Z.-Q., 2020. Trace fossils as proxy for biotic recovery after the end-Permian mass extinction: A critical review. Earth-Science Reviews, 203, 103059. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.103059.

Martin, K. D., 2004. A re-evaluation of the relationship between trace fossils and dysoxia. Geological Society, London, Special Publications, 228(1): 141–156. https://doi.org/10.1144/GSL.SP.2004.228.01.08.

Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., and Hill, T. M., 2015. Paleoceanographic Insights on Recent Oxygen Minimum Zone Expansion: Lessons for Modern Oceanography. PLOS ONE, 10(1): e0115246. https://doi.org/10.1371/journal.pone.0115246.

Petrick, B., McClymont, E. L., Felder, S., Rueda, G., Leng, M. J., and Rosell-Melé, A., 2015. Late Pliocene upwelling in the Southern Benguela region. Palaeogeography, Palaeoclimatology, Palaeoecology, 429: 62–71. https://doi.org/10.1016/j.palaeo.2015.03.042.

Pisias, N. G., 1983. Geologic time series from deep-sea sediments: Time scales and distortion by bioturbation. Marine Geology, 51(1): 99–113. https://doi.org/https://doi.org/10.1016/0025-3227(83)90091-9.

Qunhui, Y., Huaiyang, Z., Fuwu, J., Hu, W., & Weifang, Y., 2008. Bioturbation in Seabed Sediments and Its Effects on Marine Sedimentary Processes and Records. Advances in Earth Science, 23(9): 932–941. 10.11867/j.issn.1001-8166.2008.09.0932.

Taufiqurrahman, E., Wahyudi, A. J., and Masumoto, Y., 2020. The Indonesian throughflow and its impact on biogeochemistry in the Indonesian Seas. ASEAN Journal on Science and Technology for Development, 37(1): 29–35. https://doi.org/10.29037/AJSTD.596.

Wiguna, T., Yuwono, F. S., Zuraida, R., Atmadipoera, A., Vogel, H., Damanik, A., Tournier, N., and Cahyarini, S. Y., 2024. Paleoproductivity drivers in the Banggai Waters, Sulawesi, Indonesia: Insights from elemental analysis of marine surface sediment. BIO Web Conf., 106, 03008. https://doi.org/10.1051/bioconf/202410603008.

Xie, T., Cao, Z., Hamzah, F., Schlosser, P., and Dai, M., 2024. Nutrient Vertical Flux in the Indonesian Seas as Constrained by Non-Atmospheric Helium-3. Geophysical Research Letters, 51(24). https://doi.org/10.1029/2024GL111420.




DOI: http://dx.doi.org/10.32693/bomg.40.1.2025.896


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: