MODEL PARSIAL HARI TENANG VARIASI MEDAN GEOMAGNET SEBAGAI FUNGSI HARI DALAM SETAHUN, USIA BULAN DAN WAKTU LOKAL DI STASION GEOMAGNET TONDANO

PARSIAL MODEL OF THE QUIET DAILY GEOMAGNETIC FIELD VARIATION AS A FUNCTION OF DATE OF YEAR, LUNAR AGE, AND LOCAL TIME AT TONDANO GEOMAGNETIC STATION

John Maspupu dan Setyanto Cahyo Pranoto

Pusat Sain Antariksa LAPAN, Jl. Dr. Djundjunan No. 133 Bandung-40173 E-mail: john mspp@yahoo.com dan setya_cp@yahoo.com

Diterima : 02-09-2013, Disetujui : 15-02-2014

ABSTRAK

Penentuan suatu model parsial hari tenang variasi medan geomagnet (ΔH) di stasion geomagnet Tondano merupakan fungsi *Date of Year* (DOY), *Lunar Age* (LA), dan *Local Time* (LT). Diperoleh tiga model parsial hari tenang variasi medan geomagnet yaitu $\Delta H = g(DOY)$, $\Delta H = h(LA)$, dan $\Delta H = m(LT)$. Kontribusi dari DOY terhadap hari tenang variasi medan geomagnet (ΔH) sangatlah kecil (sebesar 0,784.10⁻³ %). Kontribusi faktor fisis lainnya diduga berperan terhadap hari tenang variasi medan geomagnet (ΔH) . Informasi hasil analisis model parsial variasi hari tenang terhadap usia bulan menunjukkan adanya anomali di sekitar lokasi pengamatan. Model parsial hari tenang variasi medan geomagnet yang diperoleh akan membentuk model empiris dari hari tenang. Model empiris akan memberikan informasi gangguan geomagnet untuk kegiatan survei geofisika di perairan Sulawesi Utara.

Kata kunci : Model parsial, hari tenang, variasi medan geomagnet, DOY, LA, LT, Tondano.

ABSTRACT

Determination of partial model from quiet daily geomagnetic field variation (ΔH) at geomagnetic station in Tondano is a function of Day of Year (DOY), Lunar Age (LA) and Local Time (LT). It obtains three partial models of quiet daily geomagnetic field variation, those are $\Delta H = g(DOY)$, $\Delta H = h(LA)$, dan $\Delta H = m(LT)$. Contribution from DOY to the quiet daily geomagnetic field variation (ΔH) is very small (around 0,784.10⁻³ %). Another contribution of physical factor presumes to play role to quiet daily geomagnetic field (ΔH). Information of analysis result of quiet daily partial model to lunar age indicates anomaly occurrence around the observation location. Partial model of the obtained quite daily geomagnetic will form empirical model of quite day. This empirical model will provide any information about geomagnetic disturbance for geophysical survey in North Sulawesi Waters.

Keywords: Partial model, the quiet daily variation, geomagnetic field variation, DOY, LA, LT, Tondano.

PENDAHULUAN

Dari penelitian sebelumnya telah diketahui bahwa variasi musiman dari hari tenang variasi medan geomagnet dapat dinyatakan sebagai superposisi komponen stasioner, komponen tahunan dan komponen semi tahunan (Campbell, 1989 dan Hibberd, 1985). Selain itu amplitudo dan fase dari hari tenang variasi medan geomagnet ini bergantung juga pada usia bulan, sehingga variasi hari tenang bulan selalu mengikuti hukum fase Chapman (Chapman's phase law). Begitu pula studi peneliti yang sama telah menunjukkan bahwa amplitudo komponen harmonik kesatu, kedua, ketiga, dan keempat dari hari tenang variasi medan geomagnet adalah dominan untuk variasi-variasi waktu lokal (Campbell, 1992; Campbell, 1990). Dengan mem-ertimbangkan beberapa referensi di atas, timbullah pemikiran untuk menentukan suatu model parsial hari tenang variasi medan geomagnet ΔH di SG Tondano. Oleh karena itu jelas tujuan akhir pembahasan makalah ini adalah untuk menentukan ketiga model parsial hari tenang variasi medan geomagnet. Namun yang menjadi masalah adalah bagaimana mengkaji serta membentuk modelmodel parsial tersebut. Untuk mengantisipasi masalah ini diperlukan suatu metodologi yang melibatkan konsep-konsep analisis Fourier ataupun analisis harmonik bola (spherical harmonic analysis). Selain itu kontribusi dari hasil-hasil ini akan digunakan sebagai model pendukung untuk membentuk model empiris dari hari tenang variasi medan geomagnet di stasion geomagnet Tondano. Sehingga model empiris hari tenang inilah akan memberikan informasi tentang gangguan geomagnet yang ada di stasion geomagnet Tondano (Nilai Gangguan geomagnet = Nilai variasi medan geomagnet yang terukur - Nilai model empiris hari tenang). Dengan demikian ini akan memberikan informasi gangguan geomagnet untuk operasi survey geologi disekitar stasion geomagnet Tondano.

Model Parsial Hari Tenang

Dalam mengkonstruksi model parsial hari tenang variasi medan geomagnet perlu diperhatikan keterkaitan atau kebergantungan hari tenang variasi medan geomagnet terhadap beberapa komponen yang dapat mempengaruhinya. Komponen-komponen tersebut antara lain adalah : hari dalam setahun (DOY), usia bulan (LA) dan waktu lokal (LT). Oleh karena itu pembahasan model parsial ini akan mengacu pada penelitian- penelitian sebelumnya yang telah mengkaji hubungan fisis maupun hukum terapan fisis didalam mengendalikan proses dan mekanisme fisis terkait.

Keterkaitan sebagai fungsi dari Hari dalam Setahun (DOY)

Menurut Campbell, 1989, disebutkan bahwa variasi musiman dari hari tenang variasi medan geomagnet dapat dinyatakan sebagai superposisi dari komponen stasioner, komponen tahunan dan komponen semi tahunan. Kurva ΔH versus DOY yang ditampilkan dalam Gambar 4 (Yamazaki, 2009) menunjukkan bahwa kecenderungan kurva yang diberi garis tebal hitam merupakan kurva kombinasi sinus cosinus yang paling cocok untuk mewakili ketiga komponen (yaitu stasioner, tahunan, dan semi tahunan). Karena itu kurva ini dapat diwakili oleh suatu bentuk deret Fourier yang terdiri dari lima koefisien dengan periode 365 hari. Dalam hal ini satu koefisien mewakili komponen stasioner, dua koefisien berikutnya mewakili komponen tahunan dan dua koefisien lainnya mewakili komponen semi tahunan. Dengan demikian hari tenang variasi medan geomagnet ΔH dapat dinyatakan sebagai fungsi dari hari dalam setahun DOY. Sehingga dapat ditulis dalam bahasa matematis sebagai berikut:

Dalam hal ini b_1, b_2, \dots, b_5 adalah koefisien-koefisien deret Fourier.

Keterkaitan sebagai fungsi dari Usia Bulan (LA)

Telah diketahui dari peneliti sebelumnya (Yamazaki, 2011) bahwa amplitudo dan fase dari hari tenang variasi medan geomagnet ini bergantung juga pada usia bulan, sehingga variasi hari tenang bulan selalu mengikuti hukum fase Chapman (*Chapman's phase law*). Dengan demikian variasi hari tenang bulan L dapat dinyatakan dalam bentuk persamaan berikut:

Dalam hal ini τ adalah waktu bulan dalam satuan hari, LA adalah satuan dalam hari artinya: 0 untuk bulan baru dan 14 untuk bulan penuh. Sedangkan C_n dan α_n masing-masing adalah amplitudo dan fase harmonik ke-n dari variasi bulan. Persamaan 2 ini telah diuji oleh Rastogi, 1968 dan Rastogi, dan Trivedi, 1970. Sehingga pada suatu waktu lokal yang tetap, persamaan 2 akan terwakili dengan harmonik ke-4 dan ditulis sebagai,

Dalam hal ini B_1 , B_2 dan β adalah konstanta-konstanta yang berturut-turut mewakili komponen stasioner, komponen amplitudo dan komponen fase. Persamaan 3 ini dikenal sebagai persamaan prediksi semi-bulanan variasi medan geomagnet. Dalam Yamazaki, 2011 persamaan 3 ini digunakan sebagai fungsi kecocokan (*fitting function*) semi-bulanan variasi medan geomagnet. Dengan demikian hari tenang variasi medan geomagnet ΔH dapat dinyatakan sebagai fungsi dari usia bulan LA. Sehingga persamaan 3 dapat dijabarkan secara matematis sebagai berikut:

Dalam hal ini c_1, c_2, c_3 adalah koefisien-koefisien fungsi harmonik.

Keterkaitan sebagai fungsi dari Waktu Lokal (LT)

Dengan menggunakan analisis Fourier ternyata hari tenang variasi medan geomagnet dapat diungkapkan sebagai sejumlah gelombang-gelombang sinus. Oleh karena itu menurut Yamazaki, 2011 deviasi dari rata-ratanya dapat

Dalam hal ini A_n dan β_n masing-masing merupakan amplitudo dan fase harmonik ke-n dari variasi waktu lokal. Studi sebelumnya menunjukkan bahwa amplitudo dari komponen-komponen harmonik kesatu, kedua, ketiga dan keempat sangat dominan. Sedangkan amplitudo dari komponen-komponen harmonik kelima dan seterusnya sangat kecil kemunculannya sehingga dapat diabaikan (Campbell, 1992; Campbell, 1990). Selain itu hasil-hasil dalam Gambar 5 (Yamazaki, 2011) terlihat bahwa persentase amplitudo relatif dari komponen-komponen harmonik kesatu, kedua, ketiga dan keempat masing-masing sekitar 40%, 30%, 15%, dan 5%. Sedangkan persentase amplitudo relatif untuk komponen-komponen harmonik kelima dan seterusnya selalu kurang dari 5%. Oleh karena itu untuk keperluan waktu lokal ,deret 5 di atas cukup ditinjau sampai pada harmonik keempat saja (n =1 s/d n =4). Dengan demikian hari tenang variasi medan geomagnet ΔH dapat dinyatakan sebagai fungsi dari waktu lokal LT. Sehingga deret 5 dapat ditulis secara matematis sebagai berikut:

Dalam hal ini d_1, d_2, \dots, d_9 adalah koefisien-koefisien deret Fourier.

METODE

Konsep yang digunakan dalam penelitian ini menyangkut analisis Fourier ataupun analisis harmonik bola (*spherical harmonic analysis*). Untuk itu misalkan f(x) terdefinisi dalam selang (0, L) dan selanjutnya asumsikan periode fungsi tersebut adalah L. Dengan demikian deret *Fourier* atau perluasan *Fourier* berkorespondensi dengan f(x) yang didefinisikan sebagai berikut:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{2n\pi x}{L} + b_n \sin \frac{2n\pi x}{L}) \text{ dengan koefisien- koefisien Fourier } a_n, b_n.$$

Dalam hal ini

 $\begin{cases} a_n = \frac{2}{L} \int_0^L f(x) \cos \frac{2n\pi x}{L} dx \\ n = 0, 1, 2, \dots n \end{cases}$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin \frac{2n\pi x}{L}$$

Sedangkan data yang digunakan dalam kasus penelitian ini adalah data medan geomagnet (komponen H saja) dari stasion geomagnet Tondano dengan kriteria indeks gangguan geomagnet lokal $Kp \leq 2^+$. Data komponen H ini dipilih pada hari-hari yang telah memenuhi $Kp \leq 2^+$ sebanyak *365 (tiga ratus enam puluh lima) hari*. Selanjutnya tahapan kegiatan penelitian yang dilakukan ini dapat dijabarkan dalam beberapa langkah berikut :

- i). Kompilasi data komponen H tiap hari dari stasion geomagnet Tondano dengan kriteria Kp $\leq 2^+$ sebanyak 365 hari.
- ii). Tentukan *baseline* BL setiap hari yang didasarkan pada 6 nilai waktu pada malam hari yaitu jam : 22, 23, 00, 01, 02 dan 03. Sehingga BL pada waktu local (*local time LT*) dapat diformulasikan sebagai berikut :

$$BL = \frac{H(22) + H(23) + H(00) + H(01) + H(02) + H(03)}{6}$$
, (Yamazaki, 2011).

- iii). Hitung ΔH setiap hari pada jam 14.00 siang(sesuai dengan puncak variasi musiman di khatulistiwa)dengan menggunakan formulasi berikut: $\Delta H(14) = H(14) BL$, dan lakukan perhitungan ini selama 365 hari (jadi total terdapat 365 data perhitungan $\Delta H(14)$.
- iv). Hitung rata-rata ΔH selama 365 hari pada jam 14.00 siang dengan menggunakan formulasi

$$\overline{\Delta H} = \frac{\sum_{i=1} \Delta H_i}{365}.$$

v). Nyatakan fungsi g(DOY) = g(y) dalam bentuk deret Fourier sebagai berikut :

$$g(y) = \dot{b_1} + \sum_{k=1}^{2} [\dot{b_{2k}} \cos(2\pi k \cdot \frac{y}{365}) + \dot{b_{2k+1}} \sin(2\pi k \cdot \frac{y}{365})], \text{ dengan } 1 \le y = DOY \le 365.$$

vi). Hitung koefisien-koefisien Fourier untuk fungsi g(DOY) = g(y) dengan menggunakan formulasi berikut: $b_1 = \frac{a_0}{2} = \frac{1}{365} \int \overline{\Delta H} dy$.; $b_{2n} = a_n = \frac{2}{365} \int \overline{\Delta H} \cos \frac{2n\pi y}{365} dy$.

$$\dim b_{2n+1} = b_n = \frac{2}{365} \int_{1}^{365} \frac{\Delta H}{\Delta H} \sin \frac{2n\pi y}{365} dy. \text{ , dengan } n = 1, 2.$$

- vii). Hitung ΔH setiap jam dengan menggunakan formulasi berikut : $\Delta H(LT) = H(LT) BL$, dan lakukan perhitungan ini selama 28 hari yang telah di acak (jadi total terdapat 672 data perhitungan $\Delta H(LT)$).
- viii). Hitung rata-rata harian $\overline{\Delta H_j}$ dan rata-rata bulanan $\overline{\Delta H}$ (selama 28 hari yang telah diacak) dengan menggunakan formulasi berikut :

$$\overline{\Delta H_j} = \frac{\sum_{i=1}^{24} \Delta H_i}{24} , j = 1, 2, \dots, 28. \quad \text{dan} \quad \overline{\overline{\Delta H}} = \frac{\sum_{j=1}^{28} \overline{\Delta H_j}}{28}.$$

ix). Nyatakan fungsi h(LA) = h(z) dalam bentuk deret Fourier sebagai berikut :

$$h(z) = c_1 + c_2 \cos(2\pi \cdot \frac{2z}{28}) + c_3 \sin(2\pi \cdot \frac{2z}{28}), \text{ dengan } 1 \le z = LA \le 28.$$

x). Hitung koefisien-koefisien Fourier untuk fungsi h(LA) = h(y) dengan menggunakan formulasi berikut:

$$c_1 = \frac{a_0}{2} = \frac{1}{28} \int_{1}^{28} \overline{\Delta H} dz$$
; $c_2 = a_2 = \frac{2}{28} \int_{1}^{28} \overline{\Delta H} \cos \frac{4\pi z}{28} dz$.

dan
$$c_3 = b_2 = \frac{2}{28} \int_{1}^{28} \frac{1}{\Delta H} \sin \frac{4\pi z}{28} dz.$$

- xi). Hitung ΔH setiap jam (mulai jam 1.00 s/d jam 24.00) dengan menggunakan formulasi berikut : $\Delta H(LT) = H(LT) - BL$, dan lakukan perhitungan ini selama 24 jam dalam 1 hari yang telah diacak (jadi total terdapat 24 data perhitungan $\Delta H(LT)$).
- xii). Hitung rata-rata ΔH selama 24 jam (dalam 1 hari yang telah diacak) dengan menggunakan formulasi berikut :

$$\overline{\Delta H} = \frac{\sum_{i=1}^{24} \Delta H_i}{24}.$$

xiii). Nyatakan fungsi m(LT) = m(w) dalam bentuk deret Fourier sebagai berikut :

m(w) = d₁ +
$$\sum_{k=1}^{7} [d_{2k} \cos(2\pi k \cdot \frac{w}{24}) + d_{2k+1} \sin(2\pi k \cdot \frac{w}{24})]$$
, dengan 1 ≤ w = LT ≤ 24.

xiv). Hitung koefisien-koefisien Fourier untuk fungsi m(LT) = m(w) dengan menggunakan formulasi berikut: $d_1 = \frac{a_0}{2} = \frac{1}{24} \int_{1}^{24} \overline{\Delta H} dw$; $d_{2n} = a_n = \frac{2}{24} \int_{1}^{24} \overline{\Delta H} \cos \frac{2n\pi w}{24} dw$.

dan
$$d_{2n+1} = b_n = \frac{2}{24} \int_{1}^{24} \frac{\Delta H}{\Delta H} \sin \frac{2n\pi w}{24} dw$$
, dengan $n = 1, 2, 3, 4$.

xv). Nyatakanlah ketiga model parsial tersebut yaitu : ΔH sebagai fungsi dari DOY, ΔH sebagai fungsi dari LA, dan ΔH sebagai fungsi dari LT.

HASIL DAN PEMBAHASAN

Pembahasan makalah ini difokuskan pada studi kasus penelitian dengan mengambil lokasi di stasion geomagnet Tondano. Data yang digunakan dalam kasus penelitian ini adalah data medan geomagnet (komponen H saja) dengan kriteria $Kp \leq 2^+$. Data komponen H ini dipilih pada hari-hari yang telah memenuhi $Kp \leq 2^+$ sebanyak 365 (tiga ratus enam puluh lima) hari. Selanjutnya hasil-hasil pengamatan maupun perhitungan dari langkah-langkah i) sampai dengan iii) pada bagian metodologi makalah ini dapat dilihat dalam Tabel 1, dan Tabel 2. Sedangkan hasil-hasil pengamatan maupun perhitungan dari langkah vii) dan langkah xi) pada bagian metodologi makalah ini juga dapat dilihat dalam Tabel 3 dan Tabel 4, di bawah ini.

No	Date	Komp H
1	2010012700	39308.95
2	2010012701	39309.67
3	2010012702	39309.48
4	2010012703	39309.22
5	2010012704	39309.14
6	2010012705	39310.81
7	2010012706	39312.89
8	2010012707	39316.1
9	2010012708	39322.87
10	2010012709	39332.17
11	2010012710	39337.54
12	2010012711	39345.17
13	2010012712	39345.54
14	2010012713	39338.27
15	2010012714	39120.62
16	2010012715	39179.55
17	2010012716	38856.86
18	2010012717	38960.48
19	2010012718	39181.24
20	2010012719	39181.98
21	2010012720	39183.64
22	2010012721	39181.78
23	2010012722	39180.36
24	2010012723	39181.1
25	2010012800	39182.08
26	2010012801	39182.69
27	2010012802	39183.17
28	2010012803	39182.85
29	2010012804	39184.1
30	2010012805	39182.81
31	2010012806	39183.67
32	2010012807	39186.35
33	2010012808	39192.79
34	2010012809	39202.95
30	2010012810	39203.38
30 27	2010012811	20205.22
37	2010012012	39203.22
20	2010012813	20203.17
40	2010012814	39201.1
40	2010012815	39191.32
41	2010012810	39185.25
42	2010012017	39187 37
44	2010012810	39188 58
45	2010012820	39188 43
46	2010012821	39183.42
47	2010012822	39181.69
48	2010012823	39181.67

Tabel 1	. Data	observasi	i komponei	ηΗα	lengan	kriteria
$Kp \le 2^+$	sebar	ıyak 365 l	nari.			

		 20207 4E
8713	2011121700	39207.45
0714	2011121701	39206.42
8715	2011121702	39209.1
8/10	2011121703	39208.67
8717	2011121704	39208.48
8718	2011121705	39208.73
8719	2011121706	39210.84
8720	2011121707	39218.31
8721	2011121708	39229.84
8722	2011121709	39242.99
8723	2011121710	39249.7
8724	2011121711	39256.14
8725	2011121712	39255.91
8726	2011121713	39242.74
8727	2011121714	39228.43
8728	2011121715	39216.21
8729	2011121716	39212.31
8730	2011121717	39212.43
8731	2011121718	39210.81
8732	2011121719	39209.33
8733	2011121720	39208.25
8734	2011121721	39206.3
8735	2011121722	39204.53
8736	2011121723	39205.86
8737	2011121800	39207.1
8738	2011121801	39208.01
8739	2011121802	39209.06
8740	2011121803	39210.2
8741	2011121804	39211.8
8742	2011121805	39210.81
8743	2011121806	39210.9
8744	2011121807	39215.72
8745	2011121808	39221.45
8746	2011121809	39231.94
8747	2011121810	39242.04
8748	2011121811	39250.92
8749	2011121812	39251.5
8750	2011121813	39242.3
8751	2011121814	39229.3
8752	2011121815	39217.66
8753	2011121816	39208.73
8754	2011121817	39203.55
8755	2011121818	39202.8
8756	2011121819	39204.33
8757	2011121820	39205.18
8758	2011121821	39205.94
8759	2011121822	39206.24
8760	2011121823	39206.85

48 JURNAL GEOLOGI KELAUTAN Volume 12, No. 1, April 2014

No	Date	ΔH(14)	BL
1	20100127	-187.666	39308.28
2	20100128	19.0622	39182.04
3	20100129	10.3542	39178.01
4	20100130	15.2812	39182.97
5	20100131	-3.3972	39181.53
6	20100205	27.5258	39177.61
7	20100206	18.4132	39178.99
8	20100209	13.1844	39187.08
9	20100210	17.4266	39181.62
10	20100211	20.5953	39174.59
11	20100213	18.9076	39168.92
12	20100214	21.8862	39170.75
13	20100220	31.7227	39180.08
14	20100221	19.4703	39185.9
15	20100222	9.2975	39187
	•••		•••
350	20111120	19.6146	39204.21
351	20111121	10.8637	39203.21
352	20111126	15.3711	39198.09
353	20111127	17.0519	39200.14
354	20111128	21.041	39189.36
355	20111202	26.0174	39185.63
356	20111205	36.3134	39190.25
357	20111206	25.0062	39197.78
358	20111207	12.7002	39202.76
359	20111208	25.1604	39205.67
360	20111209	9.2041	39205.49
361	20111214	5.6545	39199.52
362	20111215	12.6233	39201.15
363	20111216	10.9082	39204.45
364	$2\overline{0111217}$	20.6588	39207.77
365	20111218	21.8352	39207.46

Tabel 2. Data perhitungan basseline BL dan Δ H(14) sebanyak 365 hari.

Tabel 3. Data perhitungan basseline BL dan $\Delta H(LT)$ sebanyak 28 hari yang telah diacak.

No	Date	$\Delta H(LT)$
1	2010020900	0.7326
2	2010020901	0.0727
3	2010020902	0.3453
4	2010020903	0.0647
5	2010020904	2.2113
6	2010020905	5.8055
7	2010020906	10.9409
8	2010020907	15.7065
9	2010020908	19.538

10	2010020909	28.2874
11	2010020910	33.6596
12	2010020911	36.0021
13	2010020912	33.9245
14	2010020913	24.0254
15	2010020914	13.1843
16	2010020915	6.3081
17	2010020916	1 6904
18	2010020910	-0.996
10	2010020917	0.330
20	2010020918	-0.7012
20	2010020919	0.31
21	2010020920	1,6060
22	2010020921	-1.0909
23	2010020922	-3.8575
24	2010020923	-4.0393
25	2010030500	-0.1788
26	2010030501	4.5255
27	2010030502	7.9067
28	2010030503	9.8644
29	2010030504	11.4036
30	2010030505	13.2011
31	2010030506	17.0269
32	2010030507	24.1123
33	2010030508	35.3872
34	2010030509	43.7767
35	2010030510	54.5213
36	2010030511	59.6669
37	2010030512	57.4076
38	2010030513	44.0352
39	2010030514	29.2203
40	2010030515	16.2467
41	2010030516	13.938
42	2010030517	8.073
43	2010030518	3.8438
44	2010030519	-0.5876
45	2010030520	-1.0813
46	2010030521	4 8609
40	2010030521	7 5873
18	2010030522	7 1768
40	2010030323	7.1700
625	 2012041100	1.0375
626	2012041100	2 2002
020	2012041101	-2.3993
027	2012041102	0.8444
028	2012041103	1.0159
629	2012041104	2.1159
630	2012041105	0.0982
631	2012041106	-3.0369
632	2012041107	5.4857
633	2012041108	24.8216
634	2012041109	48.6974
635	2012041110	71.3807
636	2012041111	82.2724
637	2012041112	73.336

638	2012041113	61.144
639	2012041114	48.4902
640	2012041115	34.0578
641	2012041116	17.8583
642	2012041117	0.2597
643	2012041118	-0.8654
644	2012041119	0.0499
645	2012041120	0.8469
646	2012041121	2.5374
647	2012041122	2.1512
648	2012041123	1.0725
649	2012061300	-0.4298
650	2012061301	-1.0199
651	2012061302	1.9732
652	2012061303	3.7272
653	2012061304	5.0249
654	2012061305	9.2392
655	2012061306	16.8313
656	2012061307	27.7266
657	2012061308	42.409
658	2012061309	63.9539
659	2012061310	66.8371
660	2012061311	61.4654
661	2012061312	44.0094
662	2012061313	34.8421
663	2012061314	23.2275
664	2012061315	10.7795
665	2012061316	13.6377
666	2012061317	20.0668
667	2012061318	18.2658
668	2012061319	13.2415
669	2012061320	12.005
670	2012061321	12.0758

671	2012061322	12.5514
672	2012061323	15.1533

Tabel 4. Data perhitungan basseline BL dan $\Delta H(LT)$ sebanyak 24 Jam (dalam 1 hari yang telah diacak).

No	Date	$\Delta H(LT)$
1	2010051500	-2.079
2	2010051501	-3.0842
3	2010051502	1.2019
4	2010051503	2.0132
5	2010051504	3.3082
6	2010051505	4.7459
7	2010051506	7.3928
8	2010051507	13.9983
9	2010051508	22.4914
10	2010051509	28.6858
11	2010051510	16.5545
12	2010051511	8.6369
13	2010051512	7.992
14	2010051513	-2.1803
15	2010051514	-12.73
16	2010051515	-22.2609
17	2010051516	-24.1378
18	2010051517	-21.949
19	2010051518	-18.605
20	2010051519	-16.2129
21	2010051520	-16.0972
22	2010051521	-17.2966
23	2010051522	-17.1086
24	2010051523	-15.8756

Penentuan 5 koefisien Fourier b_i , i=1, 2, ..., 5.

Dari data perhitungan $\Delta H(14)$ sebanyak 365 hari di Tabel 2, kemudian dihitung pula rata-rata ΔH dengan menggunakan formulasi pada langkah iv) di bagian metodologi. Hasil yang diperoleh adalah sebagai berikut : $\overline{\Delta H} = 20.6313$.

Selanjutnya dihitung 5 buah koefisien Fourier untuk fungsi g(DOY) = g(y) dengan menggunakan formulasi pada langkah vi) di bagian metodologi. Hasil yang diperoleh adalah sebagai berikut : $b_1 = 20.5748$; $b_2 = -0.1130$; $b_3 = -0.0010$; $b_4 = -0.1130$;

$$b_5' = -0.0019.$$

Dengan demikian ΔH sebagai fungsi dari DOY dapat ditulis sebagai berikut :

$$\Delta H = b_1 + \sum_{k=1}^{2} [b_{2k} \cos(2\pi k \cdot \frac{DOY}{365}) + b_{2k+1} \sin(2\pi k \cdot \frac{DOY}{365})], \text{ dengan } 1 \le DOY \le 365.$$

Sedangkan kurva fungsi tersebut terhadap hari dalam setahun (DOY) dapat dilihat pada Gambar 1.

Gambar 1. Kurva variasi hari tenang versus hari dalam setahun (DOY)

Dari Gambar 1. terlihat bahwa kedua puncak atau maksimum dari kurva tersebut berada di sekitar hari ke 100 (awal bulan ke IV) dan di sekitar hari ke 275 (akhir bulan ke IX) dengan kuat medan sebesar 20,7 nT. Sedangkan minimum dari kurva tersebut berada di sekitar hari ke 180 (akhir bulan ke VI) dengan kuat medan magnet sebesar 20,58 nT. Ini sesuai dengan teori yang menyatakan bahwa di sekitar awal bulan ke IV dan di sekitar akhir bulan ke IX posisi matahari tepat berada di atas khatulistiwa (*equator*), sehingga kuat medan magnet di kedua puncak (maksimum) kurva tersebut cukup besar. Disisi lain di sekitar akhir bulan ke VI posisi matahari berada di titik yang terjauh dari khatulistiwa, sehingga kuat medan magnet di lembah (minimum) kurva tersebut relatif kecil.

Penentuan 3 koefisien Fourier c_i , i=1, 2, ..., 3. Dari data perhitungan $\Delta H(LT)$ sebanyak 28 hari yang telah diacak dalam Tabel 3, kemudian dihitung pula rata-rata harian $\overline{\Delta H_j}$ dan rata-rata bulanan $\overline{\Delta H}$ (selama 28 hari tersebut) dengan menggunakan formulasi pada langkah viii) di bagian metodologi. Hasil yang diperoleh adalah sebagai berikut : $\overline{\Delta H} = 10.6269$. Selanjutnya dihitung 3 buah koefisien Fourier untuk fungsi h(LA) = h(z) dengan menggunakan formulasi pada langkah x) di bagian metodologi. Hasil yang diperoleh adalah sebagai berikut: $c_1 = 10.2474$; $c_2 = -0.7338$ dan $c_3 = -0.1675$

Dengan demikian ΔH sebagai fungsi dari usia bulan (LA)dapat ditulis sebagai berikut :

$$\Delta H = c_1 + c_2 \cos(2\pi \cdot \frac{2LA}{28}) + c_3 \sin(2\pi \cdot \frac{2LA}{28}), \quad \text{dengan} \quad 1 \le LA \le 28.$$

Sedangkan kurva fungsi tersebut terhadap usia bulan (LA) dapat dilihat pada Gambar 2.

Gambar 2. Kurva variasi hari tenang versus usia bulan (LA)

Dari Gambar 2. terlihat bahwa kuat medan magnet di hari ke 14 diperkirakan sebesar 9,51 nT dan kuat medan magnet di hari ke 7 diperkirakan sebesar 10,99 nT. Sedangkan pada hari ke 7 terbentuk bulan setengah penuh dan pada hari ke 14 terbentuk bulan penuh. Seharusnya kuat medan magnet di saat bulan penuh (yaitu pada hari ke 14) *lebih besar daripada* kuat medan magnet di saat bulan setengah penuh (yaitu pada hari ke 7). Jadi terdapat suatu kontradiksi yang berarti ada anomali disekitar lokasi pengamatan yang harus diselidiki lebih lanjut.

Penentuan 9 koefisien Fourier d_i , i=1, 2, ..., 9.

Kemudian dari data perhitungan $\Delta H(LT)$ sebanyak 24 jam, dihitung pula rata-rata ΔH dengan menggunakan formulasi pada langkah xii) di bagian metodologi. Hasil yang diperoleh adalah sebagai berikut : $\overline{\Delta H} = 12.2446$.

Selanjutnya dihitung 9 buah koefisien Fourier untuk fungsi m(LT) = m(w) dengan menggunakan formulasi pada langkah xiv) di bagian metodologi. Hasil yang diperoleh adalah sebagai berikut : $d_1 = 11.7344$; $d_2 = -1.0088$; $d_3 = 0.1328$; $d_4 = -0.9744$;

 $d_5 = 0.2611$; $d_6 = -0.9187$; $d_7 = 0.3805$; $d_8 = -0.8439$; $d_9 = 0.4872$.

Dengan demikian ΔH sebagai fungsi dari waktu lokal (LT) dapat ditulis sebagai berikut :

$$\Delta H = d_1 + \sum_{k=1}^{4} \left[d_{2k} \cos(2\pi k \cdot \frac{LT}{24}) + d_{2k+1} \sin(2\pi k \cdot \frac{LT}{24}) \right], \text{ dengan } 1 \le LT \le 24.$$

Sedangkan kurva fungsi tersebut terhadap waktu lokal (LT) dapat dilihat pada Gambar 3.

Gambar 3. Kurva variasi hari tenang vesus waktu lokal (LT)

Dari Gambar 3. terlihat bahwa luas kurva dalam selang waktu lokal 01.00 s/d 06.00 simetri dengan luas kurva dalam selang waktu lokal 18.00 s/d 24.00. Begitupun luas kurva dalam selang waktu lokal 06.00 s/d 12.00 simetri juga dengan luas kurva dalam selang waktu lokal 12.00 s/d 18.00. Selain itu kuat medan magnet di kedua puncak kurva

dalam selang waktu lokal 06.00 s/d 18.00 diperkirakan sebesar 12,79 nT (Gambar 3). Sedangkan kuat medan magnet di puncak kurva dalam selang waktu lokal 01.00 s/d 06.00 ataupun di puncak kurva dalam selang waktu lokal 18.00 s/d 24.00 diperkirakan sebesar 13,19 nT (Gambar 3). Ini berarti di sisi malam ataupun subuh kuat medan magnetnya *lebih besar daripada* kuat medan magnet di sisi siang. Jadi terdapat kontradiksi, karena seharusnya kuat medan magnet di sisi malam ataupun subuh *lebih kecil daripada* kuat medan magnet di sisi siang. Begitupun kuat medan magnet di waktu lokal 12.00 siang diperkirakan sebesar 11,89 nT (lihat Gambar 3), ternyata *lebih kecil daripada* kuat medan magnet di setiap puncak kurva variasi hari tenang dalam selang waktu lokal 01.00 s/d 24.00. Ini juga suatu kontradiksi, seharusnya kuat medan magnet di waktu lokal 12.00 siang *lebih besar daripada* kuat medan magnet di setiap puncak kurva variasi hari tenang dalam selang waktu lokal 01.00 s/d 24.00. Dari informasi kasus di Gambar 3., ternyata mendukung informasi kasus di Gambar 2. sehingga memperkuat dugaan terdapatnya suatu anomali disekitar lokasi pengamatan (stasion geomagnet Tondano) yang harus atau perlu diselidiki pada penelitian berikutnya.

Menurut Maspupu dan Setyanto, 2012, koefisien korelasi antara hari tenang variasi medan geomagnet dengan aktivitas matahari di SG Tondano adalah sebesar 0,4813 ($_{r_{xy}} = \rho = 0,4813$). Sedangkan koefisien-koefisien korelasi antara hari tenang variasi medan geomagnet dengan variabel DOY (*date of year*), antara hari tenang variasi medan geomagnet dengan variabel LA (*lunar age*) dan antara hari tenang variasi medan geomagnet dengan variabel LT (*local time*) di SG Tondano berturut-turut adalah sebesar 0,0028; 0,0373 dan 0,6174 Akibatnya koefisien-koefisien determinasi

 $(r_{xy}^2 = \rho^2)$ antara hari tenang variasi medan geomagnet dengan aktivitas matahari , antara hari tenang variasi medan geomagnet dengan variabel DOY (*date of year*) , antara hari tenang variasi medan geomagnet dengan variabel LA (*lunar age*) dan antara hari tenang variasi medan geomagnet dengan variabel LT (*local time*) di SG Tondano berturut-turut adalah sebesar 0,2316 ; 0,784.10⁻⁵; 0,0014 dan 0,3812 Sehingga total keseluruhan koefisien determinasi variabel-variabel tersebut adalah sebesar 0,6142. Ini berarti kontribusi aktivitas matahari , variabel DOY , variabel LA dan variabel LT terhadap hari tenang variasi medan geomagnet berturut-turut adalah sebesar 23,16 % ; 0,784.10⁻³ % ; 0,14 % dan 38,12 % . Sedangkan sisanya diperkirakan sekitar 38,58 % adalah kontribusi dari faktor fisis lainnya terhadap hari tenang variasi medan geomagnet yang perlu diselidiki lebih lanjut keberadaannya.

KESIMPULAN

Dari hasil pembahasan makalah ini dapat disimpulkan bahwa terdapat hubungan parsial antara hari tenang variasi medan geomagnet (ΔH) dengan beberapa komponen yang dapat mempengaruhinya , antara lain : hari dalam setahun (DOY), usia bulan (LA) dalam hari dan waktu lokal (LT) dalam jam. Namun juga terdapat dua masalah yang harus dipikirkan yaitu pertama, adanya anomali disekitar lokasi pengamatan (stasion geomagnet Tondano) dan kedua, adanya kontribusi faktor fisis lainnya terhadap hari tenang variasi medan geomagnet yang harus atau perlu diselidiki pada penelitian berikutnya. Selain itu dengan menggunakan data komponen H dari stasion geomagnet Tondano dapat dibentuk ketiga model parsial hari tenang variasi medan geomagnet (ΔH) yang masing-masing merupakan fungsi dari variabel DOY, variabel LA dan variabel LT. Selanjutnya proses maupun prosedur yang serupa untuk mengkonstruksi model parsial hari tenang variasi medan geomagnet (ΔH) ini , juga dapat diterapkan pada stasion geomagnet LAPAN lainnya. Dengan demikian model-model parsial yang telah diperoleh ini dapat digunakan sebagai model pendukung untuk membentuk model empiris dari hari tenang variasi medan geomagnet, yang dapat memberikan informasi gangguan geomagnet untuk operasi survey geologi disekitar setiap stasion geomagnet LAPAN di wilayah Indonesia.

UCAPAN TERIMAKASIH

Secara khusus saya ucapkan terima kasih kepada rekan-rekan sekerja di bidang Geomagsa – LAPAN yang telah memberikan banyak sumbangan pemikiran dalam diskusi-diskusi pribadi maupun kelompok.

DAFTAR ACUAN

- Campbell, W.H. 1989. The Regular Geomagnetic-Field Variations During Quiet Solar Conditions, in Geomagnetism, Vol. 3, edited by J.A. Jacobs, h.385-460, Academic, San Diego, Calif.
- Campbell, W.H ,1990. Differences in Geomagnetic S_q Field Representations Due to Variations in Spherical Harmonic Analysis Techniques ,J. Geophys. Res., 95 (A12), h.20923-20936.
- Campbell, W.H ,1992. Quiet Geomagnetic Field Representation For All Days and Latitudes , J. Geomagn. Geoelectr., 44, h.459-480.
- Hibberd, F.H. 1985. The Geomagnetic Sq Variation Annual, Semi Annual and Solar Cycle Variations and Ring Current Effects, J. Atmos. Terr. Phys., 47, h.341-352.
- Maspupu, J. & Setyanto Cahyo, P., 2012. Hubungan Antara Hari Tenang Variasi Medan Geomagnet Dengan Aktivitas Matahari di SG Tondano, *Prosiding Nasional Sains dan Pendidikan Sains VII, FSM – UKSW*, Salatiga, h.263–268.
- Rastogi, R.G., 1968. Lunar Tidal Oscillations in H at Huancayo During IGY/IGC, Ann. Geophys., 24,h.779-788.
- Rastogi, R.G. & Trivedi, N.B, 1970. Luni-Solar Tides in H at Stations Within the Equatorial Electrojet, *Planet Space Sci.*, 18, h.367-377.

- Yamasaki ,Y., 2009. Equivalent Current Systems For The Annual and SemiannualSq Variations Observed Along the 210-MM CPMN Stations , *Journal of Geophysical Research, Vol. 114, h.* A12320.
- Yamasaki ,Y.2011. An Empirical Model Of The Quiet Daily Geomagnetic Field Variation , *Journal of Geophysical Research*, Vol. 116, h. A10312.