VARIABILITY OF SEA SURFACE TEMPERATURE AND SALINITY IN MAKASSAR STRAIT DURING THE LAST GLACIAL MAXIMUM

Oktavira Dwi Demia Larasati, Marfasran Hendrizan, Rima Rachmayani, Gandhi Napitupulu


Abstract


Indonesian Throughflow (ITF), which is part of the global thermohaline circulation, is known to play an important role in the heat exchange between the Pacific and Indian Oceans. The flow of the ITF is highly complex, it depends on temperature and salinity. This study presents a proxy study from 25,000–18,000 years ago from two sites that are connected by the Indonesian Throughflow in the Makassar Strait. Oceanographic characteristics, including Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) were reconstructed and analyzed during the Last Glacial Maximum (LGM) period. A 295 cm marine sediment core coded SO217-18522 (1°24.106'N; 119°04.781'E, water depth 978 m) and SO217-18519 (0°34.329'N; 118°06.859'E, water depth 1658 m) from the SONNE 217 research cruise in 2011 was used as research material. Oxygen isotope  analysis, planktonic foraminiferal Mg/Ca geochemistry, and radiocarbon dating were used in this study. The SST reconstruction shows that the temperature during the LGM reach the minimum during ~20 ka BP and the SST value was significantly lower by ~2–3 °C compared to the Late Holocene value. The SST also shows significant cooler in marine sediment SO2017-8519 located in the southern site compared to the northern site. Salinity reconstructions during the LGM shows that SSS value was 0.82–1.13 psu higher than in the Holocene. The south–north gradients of SST and SSS in the Makassar Strait were larger over the 23.2–24.2 ka BP (SST gradient by 0.5–1 °C and SSS gradien by 1–1.7 psu) compared to the Late Holocene. The increase in SST and SSS gradients during the ~20 ka BP likely indicates a weakened intensity of the surface ITF relative to conditions during the Late Holocene.


Keywords


Indonesian Throughflow, Last Glacial Maximum, Sea Surface Temperature, Sea Surface Salinity

Full Text:

PDF

References


Anand, P., Elderfield, H., and Conte, M.H., 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18. https://doi.org/10.1029/2002PA000846.

Bemis, B.E., Spero, H.J., Bijma, J., and Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13: 150–160. https://doi.org/10.1029/98PA00070.

Dang, H., Jian, Z., Kissel, C., and Bassinot, F., 2015. Precessional changes in the western equatorial Pacific Hydroclimate: A 240 kyr marine record from the Halmahera Sea, East Indonesia. Geochemistry, Geophysics, Geosystems, 16: 148–164. https://doi.org/10.1002/2014GC005550.

Ding, X., Bassinot, F., Guichard, F., and Fang, N.Q., 2013. Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum. Marine Micropaleontology, 101: 115–126. https://doi.org/10.1016/J.MARMICRO.2013.02.003.

Fairbanks, R.G., Evans, M.N., Rubenstone, J.L., Mortlock, R.A., Broad, K., Moore, M.D., and Charles, C.D., 1997. Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs, 16: S93–S100. https://doi.org/10.1007/S003380050245/METRICS.

Fan, W., Jian, Z., Bassinot, F., and Chu, Z., 2013. Holocene centennial-scale changes of the Indonesian and South China Sea throughflows: Evidences from the Makassar Strait. Global and Planetary Change, 111: 111–117. https://doi.org/10.1016/J.GLOPLACHA.2013.08.017.

Fan, W., Jian, Z., Chu, Z., Dang, H., Wang, Y., Bassinot, F., Han, X., and Bian, Y., 2018. Variability of the Indonesian Throughflow in the Makassar Strait over the Last 30 ka. Scientific Reports, 8: 1–8. https://doi.org/10.1038/s41598-018-24055-1.

Feng, M., Zhang, N., Liu, Q., and Wijffels, S., 2018. The Indonesian throughflow, its variability and centennial change. Geoscience Letters, 5: 1–10. https://doi.org/10.1186/S40562-018-0102-2.

Fraser, N., Kuhnt, W., Holbourn, A., Bolliet, T., Andersen, N., Blanz, T., and Beaufort, L., 2014. Precipitation variability within the West Pacific Warm Pool over the past 120 ka: Evidence from the Davao Gulf, southern Philippines. Paleoceanography, 29: 1094–1110. https://doi.org/10.1002/2013PA002599.

Godfrey, J.S., 1996. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: A review. Journal of Geophysical Research: Oceans, 101: 12217–12237. https://doi.org/10.1029/95JC03860.

Gordon, A.L., 1986. Interocean exchange of thermocline water. Journal of Geophysical Research: Oceans, 91: 5037–5046. https://doi.org/10.1029/JC091IC04P05037.

Gordon, A.L., Sprintall, J., Van Aken, H.M., Susanto, R.D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., and Wirasantosa, S., 2010. The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50: 115–128. https://doi.org/10.1016/J.DYNATMOCE.2009.12.002.

Gordon, A. L., Huber, B. A., Metzger, E. J., Susanto, R. D., Hurlburt, H. E., and Adi, T. R. 2012. South China Sea throughflow impact on the Indonesian throughflow. Geophysical Research Letters, 39(11).

Gordon, A. L., Napitu, A., Huber, B. A., Gruenburg, L. K., Pujiana, K., Agustiadi and Setiawan, A. 2019. Makassar Strait throughflow seasonal and interannual variability: An overview. Journal of Geophysical Research: Oceans, 124(6): 3724-3736.

Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I., Clarke, L., Cooper, M., Daunt, C., Delaney, M., DeMenocal, P., Dutton, A., Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D., Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G., Labeyrie, L., Lea, D.W., Marchitto, T., Martínez-Botí, M.A., Mortyn, P.G., Ni, Y., Nuernberg, D., Paradis, G., Quinn, T., Rosenthal, Y., Russel, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., and Wilson, P.A., 2008. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophysics, Geosystems, 9. https://doi.org/10.1029/2008GC001974.

Hendrizan, M., Kuhnt, W., and Holbourn, A., 2017. Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr. Paleoceanography, 32: 1054–1069. https://doi.org/10.1002/2016PA003030.

Hendrizan, M., Ningsih, N.S., Cahyarini, S.Y., Mutiara, M.R., Setiadi, B., Anwar, I.P., Utami, D.A., and Agusta, V.C., 2020. Centennial-Millennial Climate Variability in the Makassar Strait during Early Holocene until the End of the Last Deglaciation. Int. Journals Ocean, 14: 197–220.

Lis, M., 2019. Glacial-Interglacial Changes in the Thermocline Structure of the Makassar Strait: Implications for Changes in the Indonesian Throughflow. Master's thesis. University of South Carolina.

Pang, X., Bassinot, F., and Sepulcre, S., 2021. Indonesian Throughflow variability over the last two glacial-interglacial cycles: Evidence from the eastern Indian Ocean, Quat. Sci. Rev, 256. 10.1016/j.quascirev.2021.106839.

Peltier, W.R., and Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quat Sci Rev, 2: 3322–3337. https://doi.org/10.1016/J.QUASCIREV.2006.04.010.

Sarnthein, M., Grootes, P.M., Holbourn, A., Kuhnt, W., and Kühn, H., 2011. Tropical warming in the Timor Sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr. Earth Planetary Science Letters, 302: 337–348. https://doi.org/10.1016/J.EPSL.2010.12.021.

Schröder, J.F., Holbourn, A., Kuhnt, W., and Küssner, K., 2016. Variations in sea surface hydrology in the southern Makassar Strait over the past 26 kyr. Quat Sci Rev, 154: 143–156. https://doi.org/10.1016/J.QUASCIREV.2016.10.018.

Schröder, J.F., Kuhnt, W., Holbourn, A., Beil, S., Zhang, P., Hendrizan, M., and Xu, J., 2018. Deglacial Warming and Hydroclimate Variability in the Central Indonesian Archipelago. Paleoceanography, Paleoclimatology, 33: 974–993. https://doi.org/10.1029/2018PA003323.

Sen Gupta, A., McGregor, S., Van Sebille, E., Ganachaud, A., Brown, J.N., and Santoso, A., 2016. Future changes to the Indonesian Throughflow and Pacific circulation: The differing role of wind and deep circulation changes. Geophysical Research Letters, 43: 1669–1678. https://doi.org/10.1002/2016GL067757.

Sprintall, J., Gordon, A.L., Koch-Larrouy, A., Lee, T., Potemra, J.T., Pujiana, K., and Wijffels, S.E., 2014. The Indonesian seas and their role in the coupled ocean–climate system. Nature Geoscience, 7(7): 487–492. https://doi.org/10.1038/ngeo2188.

Susanto, R. D., Ffield, A., Gordon, A. L., and Adi, T. R. 2012. Variability of Indonesian throughflow within Makassar strait, 2004–2009. Journal of Geophysical Research: Oceans, 117(C9).

Visser, K., Thunell, R., and Stott, L. 2003: Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 421:3667–3670. https://doi.org/10.1038/nature01331.1.

Vranes, K., Gordon, A.L., and Ffield, A., 2002. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep Sea Research Part II: Topical Studies in Oceanography, 49: 1391–1410. https://doi.org/10.1016/S0967-0645(01)00150-3.

Wyrtki, K., 1961. The thermohaline circulation in relation to the general circulation in the oceans. Deep Sea Research, 8: 39–64. https://doi.org/10.1016/0146-6313(61)90014-4.

Wyrtki, K., 1987. Indonesian Throughflow and the associated pressure gradient. Journal of Geophysical Research: Oceans, 92: 12941–12946.https://doi.org/10.1029jc092ic12p12941.

Xu, J., Holbourn, A., Kuhnt, W., Jian, Z., and Kawamura, H., 2008. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth Planet Sci Lett, 273: 152–162. https://doi.org/10.1016/J.EPSL.2008.06.029.

Zhang, P., Xu, J., Schröder, J.F., Holbourn, A., Kuhnt, W., Kochhann, K.G.D., Ke, F., Wang, Z., and Wu, H., 2018. Variability of the Indonesian Throughflow thermal profile over the last 25-kyr: A perspective from the southern Makassar Strait. Global and Planetary Change, 169:214–223. https://doi.org/10.1016/j.gloplacha.2018.08.003.




DOI: http://dx.doi.org/10.32693/bomg.39.2.2024.882


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: