SEASONAL AND INTRA-SEASONAL VARIABILITY OF OCEAN THERMAL POTENTIAL ENERGY IN THE INDONESIAN EXCLUSIVE ECONOMIC ZONE
Abstract
Ocean thermal energy is a promising marine renewable energy resource that can be developed as a clean energy alternative for Indonesia, which is in the equatorial or tropical region. This study assesses the potential of ocean thermal energy as a renewable energy source in the Indonesian Exclusive Economic Zone (EEZ) by estimating the monthly, seasonal, and intra-seasonal variability of ocean thermal energy conversion (OTEC) resources. The Indonesian EEZ spans from 6°N to 11°S and 95°E to 139°E, covering an area of 3,495,698.72 km². Using temperature data from simulations of the Hybrid Coordinate Ocean Model (HYCOM), the study evaluates the potential of OTEC resources over a 50-year period (from January 1964 to December 2013) with a spatial resolution of 0.125°. Estimation of OTEC potential power resources was based on temperature differences at depths of 20 m and 1000 m, following the hybrid cycle working principle.The results of the estimations indicate that the area has a monthly average potential power of 289.73 GW. The estimation also reveals seasonal and intra-seasonal variability in this potential energy, with fluctuations ranging from 280.09 GW in August to 295.65 GW in December, influenced by phenomena such as ENSO (El Niño Southern Oscillation) and IOD (Indian Ocean Dipole). In the Indonesian EEZ, the average potential thermal power decreases to 288.23 GW during an El Niño event and increases to 291.72 GW during a La Niña event. The IOD phenomenon has a similar effect, with potential decreasing to 281.82 GW during a positive IOD event and rising to 292.64 GW during a negative IOD event.
Keywords
Full Text:
PDFReferences
Aresti, L., Christodoulides, P., Michailides, C., & Onoufriou, T., 2023. Reviewing the energy, environment, and economy prospects of Ocean Thermal Energy Conversion (OTEC) systems. Sustainable Energy Technologies and Assessments, 60, 103459. https://doi.org/ 10.1016/J.SETA.2023.103459
Bernal, E. M., Garrido, D. C., Perea, G. A., & Escobedo Trujillo, B. A., 2022. Assessment of potential and temperature differential for an ocean thermal energy conversion plant. Case study: Cozumel, Mexico. 2022 IEEE International Conference on Engineering Veracruz, ICEV 2022. https://doi.org/10.1109/ ICEV56253.2022.9959202
Bhuiyan, M. A., Hu, P., Khare, V., Hamaguchi, Y., Thakur, B. K., & Rahman, M. K., 2022. Economic feasibility of marine renewable energy: Review. Frontiers in Marine Science, 9, 988513. https://doi.org/10.3389/ FMARS.2022.988513/BIBTEX
Chu, W., Calise, F., Duić, N., Østergaard, P. A., Vicidomini, M., & Wang, Q., 2020. Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems. Energies 2020, 13(19): 5229. https://doi.org/10.3390/EN13195229
Clemente, D., Rosa-Santos, P., & Taveira-Pinto, F., 2021. On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 135, 110162. https://doi.org/ 10.1016/J.RSER.2020.110162
Herrera, J., Sierra, S., & Ibeas, A., 2021. Ocean Thermal Energy Conversion and Other Uses of Deep Sea Water: A Review. Journal of Marine Science and Engineering 2021, 9(4): 356. https://doi.org/10.3390/ JMSE9040356
Langer, J., Quist, J., & Blok, K., 2020. Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda. Renewable and Sustainable Energy Reviews, 130, 109960. https://doi.org/ 10.1016/J.RSER.2020.109960
Lubchenco, J., & Haugan, P. M., 2023. Coastal Development: Resilience, Restoration and Infrastructure Requirements. The Blue Compendium, 213-277. https://doi.org/ 10.1007/978-3-031-16277-0-7
Masutani, S. M., & Takahashi, P. K., 2001. Ocean Thermal Energy Conversion (otec). Encyclopedia of Ocean Sciences, 1993-1999. https://doi.org/10.1006/RWOS.2001.0031
Merchant, C. J., Minnett, P. J., Beggs, H., Corlett, G. K., Gentemann, C., Harris, A. R., Hoyer, J., & Maturi, E., 2019. Global Sea Surface Temperature. Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change, 5-55. https://doi.org/10.1016/B978-0-12-814458-9.00002-2
Nihous, G. C., 2005. An Order-of-Magnitude Estimate of Ocean Thermal Energy Conversion Resources. Journal of Energy Resources Technology, 127(4): 328-333. https://doi.org/10.1115/1.1949624
Nihous, G. C., 2007. A Preliminary Assessment of Ocean Thermal Energy Conversion Resources. Journal of Energy Resources Technology, 129(1): 10-17. https://doi.org/ 10.1115/1.2424965
Nihous, G., 2018. A Preliminary Investigation of the Effect of Ocean Thermal Energy Conversion (OTEC) Effluent Discharge Options on Global OTEC Resources. Journal of Marine Science and Engineering 2018, 6(1): 25. https://doi.org/10.3390/ JMSE6010025
Qu, B., Song, J., Yuan, H., Li, X., Li, N., Duan, L., ... & Lu, X., 2015. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea: Regional variations and controls. Continental Shelf Research, 111, 250-261.
Rachmayani, R., Ningsih, N. S., Hanifah, F., & Nabilla, Y., 2023. Long-Term Trend and Variability of Volume Transport and Advective Heat Flux through the Boundaries of the Java Sea Based on a Global Ocean Circulation Model (1950–2013). Water 2023, 15(4): 740. https://doi.org/ 10.3390/W15040740
Rajagopalan, K., & Nihous, G. C., 2013. An Assessment of Global Ocean Thermal Energy Conversion Resources With a High- Resolution Ocean General Circulation Model. Journal of Energy Resources Technology, 135(4). https://doi.org/10.1115/1.4023868
Rudolph, T. B., Ruckelshaus, M., Swilling, M., Allison, E. H., Österblom, H., Gelcich, S., & Mbatha, P., 2020. A transition to sustainable ocean governance. Nature Communications 2020, 11(1): 1-14. https://doi.org/ 10.1038/s41467-020-17410-2
Serban, M., Li, G. yu, Serban, R. D., Wang, F., Fedorov, A., Vera, S., Cao, Y. peng, Chen, P. chao, & Wang, W., 2021. Characteristics of the active-layer under the China-Russia Crude Oil pipeline. Journal of Mountain Science, 18(2): 323-337. https://doi.org/ 10.1007/S11629-020-6240-Y/METRICS
Thomson, R. E., & Emery, W. J., 2014. Data analysis methods in physical oceanography. Newnes.
Topper, M. B. R., Nava, V., Collin, A. J., Bould, D., Ferri, F., Olson, S. S., Dallman, A. R., Roberts, J. D., Ruiz-Minguela, P., & Jeffrey, H. F., 2019. Reducing variability in the cost of energy of ocean energy arrays. Renewable and Sustainable Energy Reviews, 112, 263-279. https://doi.org/10.1016/ J.RSER.2019.05.032
Von Jouanne, A., & Brekken, T. K. A., 2017. Ocean and Geothermal Energy Systems. Proceedings of the IEEE, 105(11): 2147-2165. https://doi.org/10.1109 JPROC.2017.2699558
Wang, L., Ma, X., Kong, H., Jin, R., & Zheng, H., 2022. Investigation of a low-pressure flash evaporation desalination system powered by ocean thermal energy. Applied Thermal Engineering, 212, 118523. https://doi.org/ 10.1016/ J.APPLTHERMALENG.2022.118523
Zhang, H. H., Li, M. J., Feng, Y. Q., Xi, H., & Hung, T. C., 2021. Assessment and working fluid comparison of steam Rankine cycle -Organic Rankine cycle combined system for severe cold territories. Case Studies in Thermal Engineering, 28, 101601. https://doi.org/ 10.1016/J.CSITE.2021.101601
DOI: http://dx.doi.org/10.32693/bomg.39.1.2024.866