PROBLEMS IN USING ICHNOFACIES FOR DEPOSITIONAL ENVIRONMENT INTERPRETATION CASE STUDY: THE CISAAR FORMATION, SUNGAI CISAAR, SUMEDANG DISTRICT, WEST JAVA, INDONESIA

Yan Rizal, Aswan ⠀, Reynaldy Fifariz, Adityan Mulia


Abstract


Although numerous researchers have used trace fossils method to determine depositional environment, this method is still considered less robust. This is due to the finding of several similar trace fossils in two or more diverse environments, leading to irrelevancy in environmental interpretation. Therefore, we conducted this study in order to verify how powerful the trace fossil analysis is, by applying this method to interpret the depositional environment of the Cisaar Formation in the Cihanyir Tonggoh area, Sumedang Regency, West Java. We combined trace fossil study with foraminiferal assemblage analysis and vertical succession of related sedimentary units. For this study, 19 rock samples that have been collected from outcrop along 16 m traverse and 14 m measured stratigraphic sections were examined.

The result of the study shows that shallow marine trace fossils which were developed at the edge of the shelf, were transported into the basin by gravitational mass flow and re-deposited as deep marine turbidites. Trace fossils were generally found in sandstones, while planktonic foraminifers were found in claystones-sandstones interbeds. This study concludes that to avoid inconsistency in the interpretation of the depositional environment, performing trace fossils method must be integrated with other methods, e.g. analysis of lithofacies and biofacies.

 


Keywords


trace fossil; ichnofossil; ichnofacies; turbidite, depositional environment.

Full Text:

PDF

References


Blow, W. H., 1969, Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy, in Proceedings of the First International Conference Planktonic Microfossils 1967: Ej Brill, p. 199-242.

Bouma, A. H., 1962, Sedimentology of Some Flysch Deposits, A Graphic approach to Facies Interpretation. Amsterdam (Elsevier), v. 168, p. 168.

Byers, C. W. (1982). Geological significance of marine biogenic sedimentary structures. In P. L. McCall & M. J. S. Tevesz (Eds.), Animal-sediment relation: The biogenic alteration of sediments (Vol. 2, pp. 221–256). Springer Science+Business Media New York.

Djuhaeni, and S. Martodjojo, 1989, Stratigrafi Daerah Majalengka dan hubungannya dengan tatanama satuan lithostratigrafi di Cekungan Bogor: Geologi Indonesia, PPPG-Bandung, p. 227–252.

Djuri, H. M. D., 1973, Peta Geologi Lembar Arjawinangun, Jawa Skala 1: 1000.000: Direktorat Geologi Bandung.Ekdale, A. A. (1988). Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. PALAIOS, 3(5), 464–472.

Fernández & Pazos, 2012, Ichnology of Marginal Marine Facies of the Agrio Formation (Lower Cretaceous, Neuquén Basin, Argentina) at its Type Locality, Ameghiniana, 49(4): 505-524. DOI:10.5710/AMGH.23.7.2012.439

Follmi, K. B., and Grimm, K. A., 1990, Doomed pioneers: gravity-flow deposition and bioturbation in marine oxygen-deficient environments, Geology, 18(11): p. 1069–1072, doi: 10.1130/0091-7613(1990)018<1069: DPGFDA>2.3.CO;2.

Frey, R. W., 1971, Trace fossils: a field guide to selected localities in Pennsylvanian, Permian, cretaceous, and tertiary rocks of Texas and related papers: School of Geoscience, Louisiana State University.

Frey, R. W., J. D. Howard, and W. A. Pryor, 1978, Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology,23: 199–229.

Frey, R. W., and S. G. Pemberton, 1985, Biogenic structures in outcrops and cores. I. Approaches to ichnology, Bulletin of Canadian Petroleum Geology, 33(1): 72–115.

Frey, R. W., S. G. Pemberton, and T. D. A. Saunders, 1990, Ichnofacies and bathymetry: a passive relationship. Journal of Paleontology, 64(1): 155–158, doi: 10.1017/s0022336000042372.

Fürsich, F. T., 1974, Ichnogenus Rhizocorallium, Paläontologische Zeitschrift, 48(1–2): 16–28, doi: 10.1007/BF02986987.

Grimm, K.A., and Follmi,K. B, 1994, Doomed Pioneers: Allochtonous Crustacean Tracemakers in Anaerobic Basinal Strata, Ologo-Miocene San Gregorio Formation, Baja California Sur,Mexico, Palaios, 9: 313-334.

Kelling, G., and E. K. Walton, 1957, Load-cast Structures: Their Relationship to Upper-Surface Structures and their Mode of Formation, Geological Magazine, 94(6): 481–490, doi: 10.1017/S0016756800070175.

Knaust, 2013, The ichnogenus Rhizocorallium: Classification, trace makers, palaeoenvironments and evolution, Earth-Science Reviews, 126: 1 – 47, Elsevier BV, doi: 10.1016/j.earscirev.2013.04.007

Lowe, D. R., 1982, Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents, Journal of Sedimentary Petrology, 52(1): 279–297, doi: 10.1306/212f7f31-2b24-11d7-8648000102c1865d.

Mángano, M. G., Buatois, L. A., West, R. R., Maples, C. G, 2002, Ichnology of a Pennsylvanian Equatorial Tidal Flat- The Stull Shale Member at Waverly, Eastern Kansas, Bulletin of Kansas Geological Survey, 245: 1-133.

Martodjojo, S., 1984, Evolusi Cekungan Bogor: Jawa Barat, Disertasi Doktor ITB, unpublished.

Miura, T., J. Tsukahara, and J. Hashimoto, 1997, Lamellibrachia satsuma, a new species of Vestimentiferan worms (Annelida: Pogonophora) from a shallow hydrothermal vent in Kagoshima Bay, Japan, Proceedings of the Biological Society of Washington, 110(3): 447–456.

Nielsen, J. K., Hansen, K. S., Simonsen, L., 1996, Sedimentology and ichnology of the Robbedale Formation (Lower Cretaceous), Bornholm, Denmark, Bulletin of the Geological Society of Denmark, 43:115-131.

Nova. M. Z, Abdurrokhim, Firmansyah, Y., 2018, Studi Litofasies dan Lingkungan Pengendapan, Formasi Halang pada Lintasan sungai Ciwaru,Majalengka , Jawabarat. Padjadjaran Geoscience Journal, Vol. 2 no. 2.

Pemberton, S. G., 1992, Applications of ichnology to petroleum exploration: Applications of ichnology to petroleum exploration, doi:10.2110/cor.92.17.

Pemberton, S. G., Frey, R. W., 1982, Trace fossil nomenclature and the Planolites-Palaeophycus dilemma, Journal of Paleontology, v.56, no. 4, p. 843 – 881.Posamentier, H.W. and Walker, R.G., 2006, Deep-water Turbidite and Submarine Fans, SEPM (Society for Sedimentary Geology), 84:399-520.

Scholle, P. A., and D. Spearing, 1982, Sandstone Depositional Environments: AAPG Memoir 31: AAPG.

Seilacher, A., 1967, Bathymetry of trace fossils, Marine Geology, 5(5–6): 413–428, doi: 10.1016/0025-3227(67)90051-5.

Shanmugam, G., 2006, Deep-water processes and facies models: Implications for sandstone petroleum reservoirs, Elsevier.

Shanmugam, G., 1996, High-density turbidity currents: Are they sandy debris flows? Journal of Sedimentary Research, 66(1): 2–10, doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D.

Shanmugam, G., L. R. Lehtonen, T. Straume, S. E. Syvertsen, R. J. Hodgkinson, and M. Skibeli, 1994, Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and Northern North Seas (61–67 N): implications for sand distribution, AAPG Bulletin, 78(6): 910–937.

Thompson, F. C. 2003. Nomenclature and Classification, Principles of. Pp. 798-807. In Resh, V. H. & Carde, R. T. (Eds.), 2003, Encyclopedia of Insects, xxx + 1266 pp. Academic Press, San Diego

Vinn, O., Wilson, M. A., 2013, An event bed with abundant Skolithos burrows from the late Pridoli (Silurian) of Saaremaa (Estonia), Carnets de Géologie, 13(2):83-87, doi: 10.4267/2042/49316

Yanin, B. T., Baraboshkin, E. Y., 2013, Thalassinoides burrows (decapoda dwelling structures) in Lower Cretaceous sections of southwestern and central Crimea, Stratigraphy and Geological Correlation, 21(3):280-290. Doi: 10.1134/S086959381303009X.




DOI: http://dx.doi.org/10.32693/bomg.36.2.2021.731


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: