Simple Statistical Testing on Existing Data of Core 39 KL SO189/2 to Reveal its Correlation Towards Sea Surface Temperature Variation

Taufan Wiguna, Khoiril Anwar Maryunani, Mirzam Abdurrachman, Yusuf Surachman Djajadihardja


Abstract


Several paleotemperature proxies using marine core sediment data have been developed and well-proven, but they need excellent laboratory handling and destructive tools. Spectrophotometer and Multi-Sensor Core Logger (MSCL) is considered rapid and non-destructive tools compared to other climate proxies. This paper enhances the correlation between existing data of spectrophotometer, MSCL, and sea surface temperature (SST) of the sediment core 39 KL from SO189/2 through a statistical test. The dataset is processed using interpolation, Pearson correlation, and K-means clustering. Pearson correlation reveals a strong correlation between spectrophotometer, MSCL, and SST. K-means clustering points out that SST is shifting from relatively colder to warmer. This study also tries to understand the source of four tephra and one terrigenous layer. It can be concluded that the spectrophotometer and MSCL have a positive correlation to SST variation.

Keywords: statistical approach, existing data of SO189/2, spectrophotometer, Multi-Sensor Core Logger, sea surface temperature

Beberapa proksi paleotemperature menggunakan sedimen inti laut telah dikambangkan dan terbukti baik, namun membutuhkan penanganan laboratorium yang bagus dan bersifat destruktif. Spektrofotometer dan Multi Sensor Core Logger (MSCL) relatif lebih cepat dan tidak destruktif. Makalah ini membahas hubungan antara spektrofotometer, MSCL, dan temperature muka laut (SST) berdasarkan data sedimen inti 39 KL dari SO189/2 melalui pendekatan statistik. Data diolah menggunakan metode interpolasi, korelasi Pearson, dan kluster K-means. Korelasi Pearson menunjukkan korelasi kuat antara spektrofotometer, MSCL, dan SST. Kluster K-means menunjukkan pergeseran SST dari kondisi yang lebih dingin ke lebih hangat hubungan Stufi ini juga mencoba untuk memahami sumber 4 lapisan tefra dan 1 lapisan mineral terrigenous. Melalui studi ini, dapat disimpulkan bahwa spektrofotometer dan MSCL mempunyai korelasi positif terhadap variasi SST.

Kata Kunci: Pendekatan statistik, Data existing SO189/2, spektrofotometer, Multi Sensor Core Logger, Suhu Permukaan Laut


Keywords


statistical approach;existing data of SO189/2;spectrophotometer;Multi-Sensor Core Logger; sea surface temperature

Full Text:

PDF

References


Bradley, R. S., 2015. Paleoclimatology: Reconstructing Climates of the Quaternary: Third Edition, Elsevier Inc., 1–675. https://doi.org/10.1016/C2009-0-18310-1

Cao, L., Wang, P., Wang, J., Wang, X., and Yang, J., 2012. Changes in magnetic susceptibility and grain size of Holocene sediments of the Pearl River estuary and climate changes reflected by them. Marine Science Bulletin 14(2), p.70-82

Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., McCabe, A. M., 2009. The Last Glacial Maximum. Science, 325(5941), 710–714. https://doi.org/10.1126/science.1172873

De Maisonneuve, C. B., dan Bergal-Kuvikas, O., 2020. Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: identifying tephrochronologic markers, Journal of Quaternary Science, 35(1–2), 272–287. https://doi.org/10.1002/jqs.3181

Huber, B. T., Hobbs, R. W., Bogus, K. A., Batenburg, S. J., Brumsack, H. J., Do Monte Guerra, R., and Xu, Z., 2018. Tectonic, paleoclimate, and paleoceanographic history of high-latitude southern margins of Australia during the Cretaceous. Integrated Ocean Drilling Program: Preliminary Reports, (369), 1–39. https://doi.org/10.14379/iodp.pr.369.2018

Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., Lückge, A., 2014a. North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76–80. https://doi.org/10.1038/nature13196

Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., Lückge, A., 2014b. (Supplementary Table 1) Radiocarbon dating of sediment cores SO189/2 _39KL, SO189/2_119KL, and SO189/2_144KL. PANGAEA, https://doi.org/10.1594/PANGAEA.833327, In supplement to: Mohtadi, M., Prange, M., Oppo, D. W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., Lückge, A., 2014. North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76-80, https://doi.org/10.1038/nature13196

Mohtadi, M., Prange, M., Schefuß, E., and Jennerjahn, T. C., 2017. Temperatures and Mg/Ca ratios of sediment core SO189/2_039KL. PANGAEA, https://doi.org/10.1594/PANGAEA.877991, In: Mohtadi, M., Prange, M., Schefuß, E., and Jennerjahn, T. C., 2017. Late Holocene slowdown of the Indian Ocean Walker circulation. Nat Commun 8, 1015. https://doi.org/10.1038/s41467-017-00855-3

Nederbragt, A. J., Dunbar, R. B., Osborn, A. T., Palmer, A., Thurow, J. W., and Wagner, T., 2006. Sediment colour analysis from digital images and correlation with sediment composition. Geological Society Special Publication, 267, 113–128. https://doi.org/10.1144/GSL.SP.2006.267.01.08

Rogerson, M., Weaver, P. P. E., Rohling, E. J., Lourens, L. J., Murray, J. W., and Hayes, A., 2006. Colour logging as a tool in high-resolution palaeoceanography. Geological Society Special Publication, 267, 99–112. https://doi.org/10.1144/GSL.SP.2006.267.01.07

Rothwell, R G., 2006. New Techniques in Sediment Core Analysis. Geological Society, London, https://doi.org/10.1144/GSL.SP.2006.267

Rothwell, R G. and Rack, F. R., 2006. New techniques in sediment core analysis: an introduction. In New Techniques in Sediment Core Analysis. https://doi.org/10.1144/GSL.SP.2006.267.01.01

Salisbury, M. J., Patton, J. R., Kent, A. J. R., Goldfinger, C., Djadjadihardja, Y., & Hanifa, U., 2012. Deep-sea ash layers reveal evidence for large, late Pleistocene and Holocene explosive activity from Sumatra, Indonesia. Journal of Volcanology and Geothermal Research, 231–232, 61–71. https://doi.org/10.1016/j.jvolgeores.2012.03.007

Shankle, A. M., Goericke, R., Franks, P. J. S., and Levin, L. A., 2002. Chlorin distribution and degradation in sediments within and below the Arabian Sea oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research, 49(6), 953–969. https://doi.org/10.1016/S0967-0637(01)00077-2

Thamban, M., Naik, S. S., Mohan, R., Rajakumar, A., Basavaiah, N., D’Souza, W., and Pandey, P. C., 2005. Changes in the source and transport mechanism of terrigenous input to the Indian sector of Southern Ocean during the late Quaternary and its palaeoceanographic implications. Journal of Earth System Science, 114(5), 443–452. https://doi.org/10.1007/BF02702021

Wiedicke-Hombach, M., Ardhyastuti, S., Bruns, A., Delisle, G., Georgens, R., Hermawan, T., Kanamatsu, T., Lückge, A., Mothadi, M., Mühr, P., Rahadyan, T., Riyadi, A. S., Rühlemann, C., Schippers, A., Schlömer, S., Taufik, M., Teichert, B., Vink, A., Weiss, W., Wijaya, P. H., Wöhrl, C., Zeibig, M., and Zoch, D., 2006. SUMATRA - The hydrocarbon system of the Sumatra Forearc, cruise report BGR cruise SO189 leg 2. https://doi.org/10.2312/cr_so189_2.




DOI: http://dx.doi.org/10.32693/bomg.35.2.2020.682


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: