Spectral Decomposition with Continuous Wavelet Transform for Hydrocarbon Zone Detection of North Bali Waters

Tumpal Bernhard Nainggolan, Muh. Nur Iqlal Manai, Subarsyah Subarsyah


The East Java Basin is developed from an oceanic basin in front of Late Cretaceous Java Trench subduction zone to presently back-arc basin behind the Java-Lombok volcanic arc to the south. Many studies conclude hydrocarbon discovery in deep carbonate Ngimbang Formation. However, as a result of the active tectonic history of the region, there are fractures from Ngimbang Formation upward to the Oligo-Miocene Kujung Formation. It developes enhanced permeability medium for a good hydrocarbon migration. This paper presents shallow gas detection zone in the Mundu Formation by applying the spectral decomposition method with continous wavelet transform. Spectral decomposition can be effectively used to identify hydrocarbon reservoirs by analyzing seismic data in the frequency domain. Spectral decomposition with frequency 20 Hz shows the potential zone at time 779 - 832 ms which is suitable with depth 2237.5 - 2355.6 feet in well TRG-1. This method is supported with quantitative calculation of petrophysical analysis that determines 5 pay flag zones range from 2208.5 feet until 2347.5 feet.
Keywords : East Java Basin, spectral decomposition, continuous wavelet transform, petrophysical analysis

Cekungan Jawa Timur terbentuk dari cekungan samudera di tepi zona subduksi pulau Jawa pada masa Cretaseous/Kapur Akhir hingga cekungan busur belakang sistem vulkanik Jawa-Lombok di selatan. Banyak penelitian menyimpulkan penemuan hidrokarbon pada lapisan karbonat Formasi Ngimbang yang dalam. Namun, sebagai akibat dari sejarah tektonik aktif dari wilayah tersebut, terdapat rekahan dari Formasi Ngimbang sampai ke atas hingga Formasi Kujung pada masa Oligo-Miosen. Kejadian tersebut menyebabkan timbulnya peningkatan permeabilitas medium yang baik untuk migrasi hidrokarbon. Makalah ini menyajikan deteksi zona gas dangkal pada Formasi Mundu dengan menerapkan metode dekomposisi spektral dengan transformasi wavelet kontinyu. Dekomposisi spektral dapat secara efektif digunakan untuk mengidentifikasi reservoir hidrokarbon dengan menganalisa data seismik dalam domain frekuensi. Dekomposisi spektral dengan frekuensi 20 Hz menunjukkan zona potensial pada kedalaman domain waktu 779 - 832 ms yang sesuai dengan 2237.5 - 2355.6 kaki pada sumur TRG-1. Metode ini didukung dengan perhitungan kuantitatif analisa petrofisika yang menentukan 5 zona gas mulai dari 2208.5 kaki hingga 2.347.5 kaki.
Kata kunci : Cekungan Jawa Timur, dekomposisi spektral, transformasi wavelet kontinyu, analisa petrofisika


East Java Basin; spectral decomposition; continuous wavelet transform; petrophysical analysis

Full Text:



Aprilana, C., Premonowati, Hanif, I.S., Chroirotunnisa, Shirly, A., Utama, M.K., Sinulingga, Y.R., and Syafitra, F. 2016. New Prespective Paleogeography of East Java Basin : Implication Respond to Oil and Gas Exploration at Kujung Formation Carbonate Reservoar. 41st HAGI Annual Convention and Exhibition. DOI: 10.1088/1755-1315/132/1/012006.

Bian, L., Yu, Q., He, D., Lu Z., and Liu, T. 2017. Reservoir quantitative seismic interpretation based on spectral decomposition technique. International Geophysical Conference, Qindao, China, 123-126. DOI: 10.1190/IGC2017-032.

Castagna, J.P. and Sun, S. 2006. Comparison of spectral decomposition methods. First Break, 24 (3):75-79.

Chakraborty, A. and Okaya, D. 1995. Frequency-time decomposition of seismic data using wavelet-based methods. Geophysics, 60 (6):1906–1916.

Chopra, S. and Marfurt, K.J. 2007. Seismic Attributes for Prospect Identification and Reservoir Characterization. Geophysical Development Series, Society of Exploration Geophysicists, 481 p. DOI: 10.1190/1.9781560801900.

Chopra, S. and Marfurt, K.J. 2015. Choice of mother wavelets in CWT spectral decomposition. 83rd SEG New Orleans Annual International Meeting, 2957–2961. DOI: 10.1190/segam2015-5852193.1.

Davies, J.R. 1989. Generalized Stratigraphy and HC Existing of Kangean Block, Gearhart Geodata Servises Ltd.

Jahan, I. and Castagna, J. 2017. Spectral decomposition using time-frequency continuous wavelet transforms for fault detection in the Bakken Formation. SEG International Exposition and 87th Annual Meeting, 2190-2194. DOI: 10.1190/segam2017-17670965.1.

Granath, J., Emmet, P.A., Chris J.M., and Dinkelman, M.G. 2011. Pre-Cenozoic sedimentary section and structure as reflected in the JavaSPANTM crustal-scale PSDM seismic survey, and its implications regarding the basement terranes in the East Java Sea. Geological Society London Special Publications, 355 (1): 53-74. DOI: 10.1144/SP355.4.

Kangean Energy Indonesia. 2012. Kangean PSC block map. Energi Mega Persada & Mitsubishi Corporation, JAPEX.

Kumar, M., Dasgupta, R., Singha, D.K., and Singh, N.P. 2018. Petrophysical evaluation of well log data and rock physics modeling for characterization of Eocene reservoir in Chandmari oil field of Assam-Arakan basin, India. Journal of Petroleum Exploration and Production Technology, 8 (2): 323-340.

Magee, T., Buchan, C., Prosser, J. 2011. The Kujung Formation in Kurnia-1 : A Viable Fractured Reservoir Play in the South Madura Block. 34th IPA Annual Convention Proceedings. DOI: 10.29118/IPA.1030.10.G.005.

Morlet, J., Arens G., Fourgeau E., and Giard D. 1982. Wave propagation and sampling theory : Part II, Sampling theory and complex waves. Geophysics, 47 (2): 222–236.

Nazeer, A., Abbasi, S.A., and Solangi, S.H. 2016. Sedimentary facies interpretation of Gamma Ray (GR) log as basic well logs in Central and Lower Indus Basin of Pakistan. Geodesy and Geodynamics, 7 (6): 432-443. DOI: 10.1016/j.geog.2016.06.006.

Oyem, A. and Castagna, J. 2015. Sorting and visualization of spectral-decomposition data. The Leading Edge, 34(1):42-47. DOI: 10.1190/tle34010042.1.

Robinson, H.C. 2012. Seismic Reservoir Characterization of Distributary Channel Sandstone in the Lower Cretaceus Paluxy Reservoir, Delhi Field, Lousiana. Thesis, Colorado School of Mines. Unpub.

Rojas, N.A. 2008. Spectral Decomposition Applied to Time-Lapse Seismic Interpretation at Rulison Field, Garfield County, Colorado. Thesis, Colorado School of Mines. Unpub.

Satyana, A.H., and Djumlati, M. 2003. Oligo-Miocene Carbonates of the East Java Basin, Indonesia : Facies Definition Leading to Recent Significant Discoveries. AAPG International Conference Barcelona, Spain, 1-7.

Sinha, S., Routh, P.S., Anno, P.D., and Castagna, J.P. 2005. Spectral decomposition of seismic data with continuous-wavelet transform. Geophysics, 70 (6): 19-25.

Soeparyono, N., and Lennox, P.G. 1990. Structural development of hydrocarbon traps in the Cepu oil fields, northeast Java, Indonesia. Journal of Southeast Asian Earth Sciences, 4(4):281-291. DOI: 10.1016/0743-9547(90)90003-V.

Xinhui, M. 2012. Spectral decomposition applied to time-lapse multicomponent seismic interpretation at Postle Field, Texas County, Oklahoma. Thesis, Colorado School of Mines. Unpub.

Zhang, Y., Jin, S., Jiang, H., Wang, Y., and Jia, P. 2015. Review of Well Logs and Petrophysical Approaches for Shale Gas in Sichuan Basin, China. The Open Petroleum Engineering Journal, 8 (1): 316-324.

DOI: http://dx.doi.org/10.32693/bomg.33.2.2018.556

Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 

Abstracted/Indexed by: