Practical Implementation of Multiple Attenuation Methods on 2D Deepwater Seismic Data : Seram Sea Case Study

Tumpal Bernhard Nainggolan, Deny Setiady


Abstract


Some deepwater multiple attenuation processing methods have been developed in the past with partial success. The success of surface multiple attenuation relies on good water bottom reflections for most deepwater marine situations. It brings the bigger ability to build an accurate water bottom multiple prediction model. Major challenges on 2D deepwater seismic data processing especially such a geologically complex structure of Seram Sea, West Papua – Indonesia are to attenuate surface related multiple and to preserve the primary data. Many multiple attenuation methods have been developed to remove surface multiple on these seismic data including most common least-squares, prediction-error filtering and more advanced Radon transform.
Predictive Deconvolution and Surface Related Multiple Elimination (SRME) method appears to be a proper solution, especially in complex structure where the above methods fail to distinguish interval velocity difference between primaries and multiples. It does not require any subsurface info as long as source signature and surface reflectivity are provided. SRME method consists of 3 major steps: SRME regularization, multiple modeling and least-square adaptive subtraction. Near offset regularization is needed to fill the gaps on near offset due to unrecorded near traces during the acquisition process. Then, isolating primaries from multiples using forward modeling. Inversion method by subtraction of input data with multiple models to a more attenuated multiple seismic section.
Results on real 2D deepwater seismic data show that SRME method as the proper solution should be considered as one of the practical implementation steps in geologically complex structure and to give more accurate seismic imaging for the interpretation.

Keywords : multiple attenuation, 2D deepwater seismic, Radon transform, Surface Related Multiple Elimination (SRME).

 

Banyak metode atenuasi pengulangan ganda dikembangkan pada pengolahan data seismik dengan tingkat keberhasilan yang rendah pada masa lalu. Keberhasilan dalam atenuasi pengulangan ganda permukaan salah satunya bergantung pada hasil gelombang pantul pada batas dasar laut dan permukaan pada hampir seluruh survei seismik laut. Hal tersebut menentukan keakuratan dalam membuat model prediksi pengulangan ganda dasar laut dan permukaan air. Tantangan utama dalam pemrosesan data seismik 2D laut dalam khususnya struktur geologi kompleks seperti Laut Seram, Papua Barat – Indonesia adalah pada kegiatan menekan pengulangan ganda permukaan sekaligus mempertahankan data primer. Beberapa metode yang dikembangkan untuk menghilangkan pengulangan ganda permukaan pada data seismik seperti least-square, filter prediksi kesalahan dan transformasi Radon.
Dekonvolusi Prediktif dan Metode Surface Related Multiple Elimination (SRME) digunakan sebagai solusi yang baik pada struktur kompleks dimana metode-metode lain gagal untuk memisahkan perbedaan kecepatan interval data primer dan pengulangan ganda. Metode tersebut tidak membutuhkan informasi bawah permukaan selain parameter sumber dan reflektivitas permukaan. Metode SRME terdiri dari 3 tahapan utama : regularisasi SRME, pemodelan pengulangan ganda dan pengurangan adaktif least-square. Regularisasi near offset diperlukan untuk mengisi kekosongan pada near offset yang disebabkan oleh adanya sejumlah tras terdekat yang tidak terekam selama akuisisi. Pemodelan maju digunakan untuk memisahkan data primer dan pengulangan ganda kemudian inversi dengan pengurangan input data dengan model multiple.
Hasil pada data seismik 2D laut dalam menunjukkan bahwa metode SRME layak diterapkan sebagai salah satu pengembangan metode atenuasi multiple permukaan serta untuk meningkatkan akurasi data seismik terutama untuk struktur geologi kompleks.

Kata kunci : peredaman pengulangan ganda (multiple), seismik 2D laut dalam, transformasi Radon, Surface Related Multiple Attenuation (SRME).


Keywords


multiple attenuation; 2D deepwater seismic; predictive deconvolution, Radon transform; Surface Related Multiple Elimination (SRME).

Full Text:

PDF

References


Abbasi, S., and Jaiswal, P., 2013, Attenuating long-period multiples in short offset 2D streamer data: Gulf of California, SEG Houston 2013 Annual Meeting, 4201-4205.

Amiruddin, 2009, A Review on Permian to Triassic Active or Convergent Margin in Southeasternmost Gondwanaland: Possibility of Exploration Target for Tin and Hydrocarbon Deposits in the Eastern Indonesia, Jurnal Geologi Indonesia, Vol. 4, 31-41.

Cao, Z., 2006, Analysis and Application of the Radon transform, University of Calgary, 88p.

Dutta, G., 2016, Least-squares reverse time migration with Radon preconditioning, SEG International Exposition and 86th Annual Meeting, 4198-4203.

Fan, J., Li, Z., Song, X., and Zhang, K., 2015, Application of anisotropic high resolution Radon transform for multiple attenuation, SEG New Orleans Annual Meeting, 4580-4584.

Hall, R., 1996, Reconstructing Cenozoic SE Asia, Tectonic Evolution of SE Asia, Geological Society of London, 153-184.

Hall, R., 2001, Cenozoic reconstructions of SE Asia and the SW Pacific: changing patterns of land and sea, Faunal and Floral Migrations and Evolution in SE Asia and Australasia - Swets & Zeitlinger, 35-56.

Hill, K.C., 2012, Tectonic and Regional Structure of Seram and the Banda Arc., Indonesian Journal of Sedimentary Geology, Vol. 23, 5-16.

Ibrahim, A., and Sacchi, M.D., 2013, Simultaneous source separation using robust Radon transform, SEG Houston Annual Meeting, 4283-4288.

Kemp, G., and Mogg, W., 1992, A re-appraisal of the geology, tectonics and prospectivity of Seram Island, Eastern Indonesia, Proceedings Indonesian Petroleum Association, 21st Annual Convention, Vol. 1, 521-552.

Latif, A., and Mousa, W.A., 2015, Efficient under-sampled high resolution Radon transform, SEG New Orleans Annual Meeting, 4574-4579.

Li, Y., Shi, Y., Jing, H., and Song, Y., 2014, Multiple suppression method by combining wave-equation prediction and hyperbolic Radon transform, CPS/SEG Beijing 2014 International Geophysical Conference, 253-256.

Li, Z., Wang, P., and Li, Z., 2015, Separation of primaries and different order multiples based on focal transform and SRME, SEG New Orleans Meeting, 4590-4594.

Milsom, J. 2001, Subduction in eastern Indonesia: how many slabs?, Tectonophysics, Vol. 338, 167-178

Nainggolan, T.B., 2014, Pemetaan Geologi dan Geofisika Kelautan LP 2812 dan LP 2912 Perairan Laut Seram, Papua Barat. Pusat Penelitian dan Pengembangan Geologi Kelautan, Internal report, Unpublished, 62p.

Pairault, A.A., Hall, R., and Elders, R.F., 2003, Tectonic evolution of the Seram trough, Indonesia, Proceedings of Indonesian Petroleum Association 29th Annual Convention, Vol. 1, 355-370.

Poole, G., 2015, Radon modelling with time-frequency sparseness weights, SEG New Orleans Annual Meeting, 4510-4514.

Sanger, W., Bloor, R., Kostov, C., de Melo, F.X., Espinoza, C., Moldoveanu, N., Miers, G., Slaton, S., and Thompson, J., 2016, Coil Demultiple Improvement through Reduction of Input Location Error, SEG International Exposition and 86th Annual Meeting, 4493-4497.

Tobing, S.L., Robinson, G.P., 1990, Peta Geologi Lembar Kaimana, Irian Jaya Geological Map of The Kaimana Sheet, Pusat Penelitian dan Pengembangan Geologi.

Verschuur, D. J., 2006, Seismic multiple removal techniques: past, present and future, EAGE publications, 174p.

Yilmaz, O., 2001, Seismic Data Analysis : Processing, Inversion, and Interpretation of Seismic Data. Vol. 1, Society of Exploration Geophysicists, 998p.




DOI: http://dx.doi.org/10.32693/bomg.32.1.2017.365


Accredited by Ministry of Research, Technology, and Higher Education, Republic Indonesia 


Abstracted/Indexed by: