MORFODINAMIKA JANGKA PENDEK PENDANGKALAN DI ALUR PELAYARAN BARITO, KALIMANTAN SELATAN
Abstract
Potensi sumber daya mineral di pulau Kalimantan pada umumnya berada di hulu-hulu sungai yang relatif jauh dari pantai. Potensi ini pada umumnya telah dieksplorasi bahkan dieksploitasi, namun kendala yang umum dihadapi adalah pengangkutan hasil tambang tersebut. Keterbatasan sarana dan prasaran transportasi darat akibat kondisi alam yang berawa sehingga menyebabkan pilihan jatuh kepada transportasi sungai yang lebih murah efektif dan efisien. Kendala yang umum terjadi pada system transportasi melalui sungai adalah pendangkalan di alur masuk dan muara sungai, oleh karena itu diperlukan pengerukan untuk pendalaman alur pelayaran. Penelitian ini bertujuan untuk mempelajari perubahan morfologi akibat sedimen yang menyebabkan pendangkalan dan penyempitan pada muara Sungai Barito. Pendekatan yang digunakan untuk analisis perubahan morfodinamika dilakukan dengan bantuan simulasi model numerik dengan menggunakan software Delft3D.
Berdasarkan simulasi model morfodinamika Delft 3D, maka dapat diketahui sedimentasi tertinggi terjadi pada areal lokasi sekitar muara Sungai Barito, dimana terjadi pendangkalan sampai sebesar 1,2 meter per-tahun. Sedangkan pada bagian selatan alur pelayaran terjadi penyempitan sebesar 300-400 meter per tahun. Hal ini menunjukkan bahwa kondisi morfologi sangat dipengaruhi oleh debit Sungai Barito.
Kata kunci: Morfodinamika, Dasar Laut, Alur Pelayaran, Sungai Barito, Kalimantan Selatan, Delft3D, Pemodelan erosi dan sedimentasi
The potency of mineral reserves in Kalimantan Island has mostly located at the upstream area that is quiet far from the coastline. Generally, the mineral potency have been explored and sometime exploited, however the most common problem in this system is how to transport of those reserves. The limitation of onland facilities and infrastructures due to swampy area caused the river transportation is the cheapest, affective and efficient choosen alternative.
However, the most common constraints on river transportation systems are silting in the inlet and estuarine. Therefore the dredging is obviously important for deepening of the access channel. The aim of this study is to reveal morphological changes due to sediment transport that is causing silting and narrowing the area around the Barito estuarine. The numerical model using Delft3D is conducted to analyse the morphodynamic changing.
Based on the Delft3D model simulation results, the highest sediment deposition occurs at a location near the Barito river estuary, where the sedimentation rate is up to 1.2 meter per year. In the southern part of the navigation canal, the canal width is reduced up to 300-400 meter per year. These indicate that the morphological process at this location highly influenced by the river discharge.
Keywords: Morphodynamic, Seabed, Access Channel, Barito River,Delft3d, Erosion and Sedimentation Model
Keywords
Full Text:
PDFReferences
Bassoullet, P, R Djuwansah, D Gouleau, and C Marius. 1986. Hydrosedimentological Processes and Soils of the Barito Estuary (South Kalimantan, Indonesia). Oceanologica Acta 9 (3): p217-226.
Bunn, Stuart E., Martin C. Thoms, Stephen K. Hamilton, and Samantha J. Capon. 2006. Flow Variability in Dryland Rivers: Boom, Bust and the Bits in between. River Research and Applications 22 (2): 179–86. doi:10.1002/rra.904.
Dalrymple, Robert W., and Kyungsik Choi. 2007. Morphologic and Facies Trends through the Fluvial-Marine Transition in Tide-Dominated Depositional Systems: A Schematic Framework for Environmental and Sequence-Stratigraphic Interpretation. Earth-Science Reviews 81 (3–4): 135–74. doi:10.1016/j.earscirev.2006.10.002.
Deltares. 2017. Delft3D-Flow Simulation of Multu-Dimensional Hydrodynamic Flows and Transport Phenomena, Including Sediments: User-Manual Hydro-Morphodynamics. Deltares.
ESDM, Balitbang. 2015. Kajian Sistem Transportasi Dan Stockpile Di Sungai-Pantai Kalimantan Bagian Selatan (Rekomendasi Kebijakan).
Fengye, Li. 1993. Modern Sedimentation Rates and Sedimentation Feature in the Huanghe River Estuary Based on210Pb Technique. Chinese Journal of Oceanology and Limnology 11 (4): 333–42. doi:10.1007/BF02850638.
George, Douglas A., Guy Gelfenbaum, and Andrew W. Stevens. 2012. Modeling the Hydrodynamic and Morphologic Response of an Estuary Restoration. Estuaries and Coasts 35 (6): 1510–29. doi:10.1007/s12237-012-9541-8.
Kimiaghalam, Navid, Masoud Goharrokhi, and Shawn P. Clark. 2016. Estimating Cohesive Sediment Erosion and Deposition Rates in Wide Rivers. Canadian Journal of Civil Engineering 43(2): 164–72.
KNKT, Komite Nasional Keselamatan Transportasi. 2014. Laporan Akhir Investigasi Kecelakaan Pelayaran.
Ledden, Mathijs van. 2003. Sand-Mud Segregation in Estuaries and Tidal Basins.
Leeuwen, S. M. Van, M. Van Der Vegt, and H. E. De Swart. 2003. Morphodynamics of Ebb-Tidal Deltas: A Model Approach. Estuarine, Coastal and Shelf Science 57 (5–6): 899–907. doi:10.1016/S0272-7714(02)00420-1.
Maren, Dirk S. van, Johan C. Winterwerp, and Julia Vroom. 2015. Fine Sediment Transport into the Hyper-Turbid Lower Ems River: The Role of Channel Deepening and Sediment-Induced Drag Reduction. Ocean Dynamics 65 (4): 589–605. doi:10.1007/s10236-015-0821-2.
Miller, Richard L, Ramón López, Ryan P Mulligan, Robert E Reed, Cheng-Chien Liu, Christopher J Buonassissi, and Matthew M Brown. 2014. Examining Material Transport in Dynamic Coastal Environments: An Integrated Approach Using Field Data, Remote Sensing and Numerical Modeling BT - Remote Sensing and Modeling: Advances in Coastal and Marine Resources. In , edited by Charles W Finkl and Christopher Makowski, 333–64. Cham: Springer International Publishing. doi:10.1007/978-3-319-06326-3_14.
Moodley, Kavandren, Srinivasan Pillay, Keshia Pather, and Hari Ballabh. 2016. Seasonal Discharge and Chemical Flux Variations of Rivers Flowing into the Bayhead Canal of Durban Harbour, South Africa. Acta Geochimica 35 (4). Science Press: 340–53. doi:10.1007/s11631-016-0100-z.
Niazi, Faegheh, Hamed Mofid, and Nasim Fazel Modares. 2014. Trend Analysis of Temporal Changes of Discharge and Water Quality Parameters of Ajichay River in Four Recent Decades. Water Quality, Exposure and Health 6 (1–2): 89–95. doi:10.1007/s12403-013-0108-0.
Padman, Laurie. 2005. Tide Model Driver ( TMD ) Manual. Arctic, 1–12.
Partheniades, Emmanuel. 1965. Erosion and Deposition of Cohesive Soils. Journal of the Hydraulics Division ASCE 91 (H: 105–139.
Ralston, David K., and W. Rockwell Geyer. 2009. Episodic and Long-Term Sediment Transport Capacity in The Hudson River Estuary. Estuaries and Coasts 32 (6): 1130–51. doi:10.1007/s12237-009-9206-4.
Rijn, L. C. van. 2005. Estuarine and Coastal Sedimentation Problems. International Journal of Sediment Research 20 (1): 39–51.
Rijn, L. C. Van, J.A. Roelvink, and W. Ter Horst. 2000. Approximation Formulae for Sand Transport by Currents and Waves and Implementation in DELFT-MOR. Delft Hydraulics. Delft, The Netherlands: Delft Hydraulics.
Sumawinata, Basuki. 1998. Sediments of the Lower Barito Basin in South Kalimantan: Fossil Pollen Composition. Southeast Asian Studies 36 (3): 293–316.
Talke, Stefan A., and Mark T. Stacey. 2008. Suspended Sediment Fluxes at an Intertidal Flat: The Shifting Influence of Wave, Wind, Tidal, and Freshwater Forcing. Continental Shelf Research 28 (6): 710–25. doi:10.1016/j.csr.2007.12.003.
Wang, Yu Hai, Chong Hao Wang, Li Qun Tang, Da Bin Liu, Chuan Sheng Guo, Chun Jing Liu, and Hui Ming Zhao. 2014. Long-Term Morphological Response to Dredging Including Cut-across-Shoal in a Tidal Channel-Shoal System. Ocean Dynamics 64 (12): 1831–43. doi:10.1007/s10236-014-0786-6.
Xie, Li, Zhenke Zhang, Yunfeng Zhang, Yaping Wang, and Xianjin Huang. 2013. Sedimentation and Morphological Changes at Yuantuojiao Point, Estuary of the North Branch, Changjiang River. Acta Oceanologica Sinica 32 (2): 24–34. doi:10.1007/s13131-013-0274-8.
DOI: http://dx.doi.org/10.32693/jgk.15.2.2017.402