POTENSI ENERGI ARUS LAUT SEBAGAI ENERGI TERBARUKAN DI SELAT LOMBOK BERDASARKAN DATA INSTANT WEST MOORING DEPLOYMENT 1

Yogo Pratomo, Widodo Setiyo Pranowo, Sahat Monang Simanjuntak

Abstract


Selat Lombok merupakan salah satu perlintasan massa air laut dunia, yang mengalir dari Samudera Pasifik menuju ke Samudera Hindia yang disebut sebagai Arus Lintas Indonesia (ARLINDO). Hal ini terbukti dengan adanya komponen harmonik periode panjang yang di pengaruhi oleh Matahari (SA, SSA), dan dipengaruhi Bulan (MSF). Hasil rekaman mooring selama 1,5 tahun, selat ini memiliki kecepatan arus harmonik rata-rata sebesar 0,25219 m/dt di kedalaman 100 meter. Arus laut merupakan salah satu energi baru terbarukan yang dapat di manfaatkan sebagai pembangkit listrik. Arus laut diolah dengan menggunakan modul toolbox T-Tide 1,3 beta, dan menghasilkan arus harmonik dan arus non harmonik. Berdasarkan komputasi skenario pertama, dengan menggunakan turbin Helix LC 500 dan menghasilkan listrik 3,56 KW (harmonic), dan 1,86 KW (non harmonik) dengan kecepatan arus terbesar terjadi pada kedalaman 146,31 meter. Nilai kecepatan arus rata-rata terdapat pada kedalaman 178,31 meter dengan daya yang dihasilkan sebesar 92,17 W pada kondisi arus non harmonik. Kecepatan arus rata-rata pada kondisi arus harmonik terdapat pada kedalaman 162,31 meter, dengan daya yang dihasilkan sebesar 32,943 W.
Kata Kunci : arus laut, energi baru terbarukan, Selat Lombok, INSTANT West Mooring.

Lombok Strait is one of seawater mass outlet, flowing from the Pacific Ocean toward the Indian Ocean called as Indonesian Through Flow (ITF). It is proven by long period of harmonic components influenced by sun (SA, SSA) and moon (MSF). The result of mooring record for 1.5 years, this strait has average speed of the harmonic ocean current is 0.25219 m/s at 100 meters water depth. Ocean current is one of renewable energy that can be used for generating power electric. Ocean currents processed by using T-tide matlab toolbox 1.3 beta to identified the harmonic and non harmonic currents. Based on first scenario of the computer conversion, by using a Helix turbine LC 500 and produce an electricity energy about 3.56 KW (harmonic), and 1.86 KW (non harmonic) ocean currents, with the maximum current speed at the 146.31 meters water depth. The average of current speed average found at 178.31 meters water depth, and it produces a power of 92.17 W (non harmonic). The current speed averages from the harmonic condition is found at 162.31 meters water depth, which can produce a power about 32.943 W.
Keyword : ocean currents, potential renewable energy, Lombok Strait, INSTANT West Mooring.

Keywords


arus laut;energi baru terbarukan;Selat Lombok;INSTANT West Mooring

Full Text:

PDF

References


Abida, R. F., Pranowo, W. S., dan Kisnarti, E., 2016. Identification of Ocean Currents Potential Energy in Lombok Strait Based on Electric Turbine Scenarios, International Journal of Science & Research, 5(4): 1158-1162.

Abida, R. F., Pranowo, W. S., Pratomo Y., dan Kisnarti, E. 2015. Identifikasi komponen harmonik di Selat Lombok berdasarkan data arus time series, Jurnal Depik, 4(1), h. 24-32, http://dx, doi, org/10, 13170/depik, 1, 1, 2361

Darvill, D., 2010. Energy Resources, Available at: < http://www.conserve energy future, com/index.php > [Accessed 28 January 2016].

Fraenkel, P. L., Clutterbuck, P., Stjernstorm, B. dan Bard, J., 1998. Seaflow: Preparing For The Worlds First Pilot Project For The Exploitation of Marine Currents at a Commercial Scale Proceeding of the 3rd European Wave Energy Conference, Patras, h. 272-276.

Gordon, A., Sprintall, J., van Aken, H. M., Susanto, D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W. S., dan Wirasantosa, S., 2010. The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program. Dynamics of Atmospheres and Oceans, 50(2): h. 115-128.

Hutabarat, S. dan Evans, S., 1985. Pengantar Oseanografi, Penerbit UI - Press, Jakarta.

Ihsan, Y. N., Tussadiah A., Pridina, N., Utamy, R. M., Astriandhita, K. M., Arnudin, K. dan Nurhasanah, 2015. Renewable Energy from Ocean on the Outflow ITF pathway, Indonesia, 65, h. 131-139.

Novrinaldi, A., Haryanto dan Hanifah, U., 2011. Rancang Bangun Turbin Heliks Aliran Datar Tipe L C500, Prosiding SNaPP Sains: Teknologi dan Kesehatan.

Pawlowicz, R. B., Beardsley, dan Lentz, S., 2002. Classical tidal harmonic analysis including error estimates inMATLAB using T TIDE, Pergamon, Computers & Geosciences 28, h. 929-937.

Pranowo, W. S., Kuswardhani, A. R. T. D., Kepel, T. L., Kadarwati, U. R., Makarim, S. dan Husrin, S., 2005. Ekspedisi INSTANT 2003-2005: Menguak Arus Lintas Indonesia, 75 h.

Pratomo, Y., Pranowo, W. S., Setiadi, H., Harsono, G., Kamija, Simanjuntak, S.M., Alam, T. M., 2016. Identifikasi Penjalaran Gelombang Panjang Samudera Hindia Ke Selat Lombok Berdasarkan Komponen Harmonik Arus, Jurnal Omni-Aktuatika, 12 (1) h.22-29.

Purba, N. P., dan Pranowo, W.S., 2015. Dinamika Oseanografi, Deskripsi Karakteristik Massa Air dan Sirkulasi Air Laut, UNPAD Press 276 h.

Theoyana, T.A., Pranowo, W. S., Anastasia R.T.D. K. dan Purwanto, 2015. Karakteristik Arus Pasang Surut di Selat Badung, Bali, Jurnal Segara, 11(2) h. 115-123.




DOI: http://dx.doi.org/10.32693/jgk.14.2.2016.357