DISTRIBUSI FORAMINIFERA DI LAUT HALMAHERA DARI GLASIAL AKHIR SAMPAI RESEN

Luli Gustiantini, Maryunani Maryunani, Rina Zuraida, C. Kissel, F. Bassinot

Abstract


Mikrofauna foraminifera telah banyak digunakan sebagai proksi dalam penelitian paleoseanografi dan perubahan iklim purba. Kelimpahan dan komposisi kimia cangkang foraminifera merekam berbagai informasi yang dapat diinterpretasi berkaitan dengan perubahan lingkungan berdasarkan parameter-parameter paleoseanografi. Paleoseanografi Laut Halmahera sangat penting untuk dikaji karena berpengaruh terhadap dinamika iklim Indonesia dan iklim global. Perubahan-perubahan parameter oseanografi tersebut mempengaruhi sirkulasi arus global dan interaksi antara air-udara yang berperan terhadap penyebaran uap air ke lintang tinggi. Oleh karena itu tujuan penelitian ini adalah mempelajari distribusi foraminifera untuk rekonstruksi perubahan paleoseanografi di Laut Halmahera dan sekitarnya. Data foraminifera ini didukung dengan pemodelan umur dan rekonstruksi isotop stratigrafi berdasarkan analisis d18O G. ruber dan C14 radiokarbon dating. Hasil penelitian menunjukkan bahwa kelimpahan foraminifera di Laut Halmahera sangat dipengaruhi oleh iklim global. Kelimpahan foraminifera terutama didominasi oleh G. ruber, G. bulloides, P. obliqueloculata, N. dutertrei, dan G. menardii dari jenis planktonic. Sedangkan jenis bentik didominasi oleh Bulimina spp., Bolivinita quadrilatera, Bolivina spp., dan Uvigerina spp. Biozonasi foraminifera menunjukkan korelasi yang sangat baik dengan data ?18O dan mencerminkan perubahan – perubahan iklim di masa lalu yang terjadi sejak 50.000 tahun yang lalu antara lain glasial akhir yang berlangsung sejak zona 1 - 4b, LGM (subzone 4b), deglasiasi (subzona 4c), kondisi seperti YD dari bumi bagian utara atau ACR dari bumi bagian selatan pada awal zona 5, interglasial (pertengahan zona 5), dan Mid Holosen Maksimum pada pertengahan subzona 5a.

Kata kunci: Distribusi foraminifera, paleoseanografi, isotop oksigen, perubahan iklim global, Laut Halmahera.


Microfauna foraminifera has been widely used as a potential proxy for paleoceanography and paleoclimatological changes. Its assemblages and its test geochemical composition preserve important data that could interprete various oceanographic parameters related to the paleoenvironmental changes. The paleoceanography dynamic of Halmahera sea is very important to be studied due to its great impact to Indonesian and global climate. The changes of its oceanographic parameters influence the thermohaline circulation and the air-sea interaction that contribute to the water favour distribution to the high latitudes. Therefore this research purpose is to analyze the foraminiferal distribution in order to reconstruct the paleoceanography changes of Halmahera sea and surrounded. This foraminiferal study is supported by the age model reconstruction and isotope stratigraphy analysis based on d18O G. ruber and 14C dating. The result suggests that foraminiferal assemblage was influenced by global climate changes. Planktonic foraminifera is dominated by G. ruber, G. bulloides, P. obliqueloculata, N. dutertrei, and G. menardii. Benthic foraminifera is dominated by Bulimina spp., Bolivinita quadrilatera, Bolivina spp., and Uvigerina spp. Foraminiferal biozonation indicates coherent correlation with ?18O record, and reflects global paleoclimatic changes that occurred since the 50 ka BP. Those paleoclimatic changes are last glacial (zone 1 - subzone 4b), LGM (zone 4b), deglaciation that was started from subzone 4c, condition of YD like of Northern Hemisphere climate or ACR like of the Southern Hemisphere climate (the beginning of zone 5), interglacial (middle of zone 5), and Mid Holocene Maximum at the middle of subzone 5a.

Keywords: Foraminiferal distribution, paleoceanograhy, oxygen isotope, global climate changes, Halmahera sea,


Keywords


Distribusi foraminifera;paleoseanografi;isotop oksigen;perubahan iklim global;Laut Halmahera

References


Aksu, A., E., Hiscott, R. N., Kaminski, M. A., Mudie, P. J., Gillespie, H., Abrajano, T., dan Yasar, D., 2002. Last glacial-Holocene paleoceanography of the Black Sea and Marmara Sea: Stable isotopic, foraminiferal and coccolith evidence. Marine Geology, 190: 119 – 149.

Barmawidjaja, B. M., Rohling, E. J., van der Kaars, W. A., Vergnaud Grazzini, C., dan Zachariasse, W. J., 1993. Glacial conditions in the northern Molucca Sea region (Indonesia). Paleogeography, Paleoclimatology, Paleoecology, 101: 147-167.

Bolli, H. M., Saunders, J. B., dan Perch – Nielsen, K., 1985. Plankton stratigraphy, Vol I. Cambridge University Press, Cambridge. 328 h.

Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, C., Beaufort, L., Kienast, M., Andersen, N., dan Garbe-Schönberg, D., 2011. Mindanao Dome variability over the last 160 kyr: Episodic glacial cooling of the West Pacific Warm Pool, Paleoceanography, 26: 18h.

Ding, X., Bassinot, F., Guichard, F., and Fang, N. Q., 2013. Indonesian Throughflow and monsoon activity records in the Timor Sea since the Last Glacial Maximum. Marine Micropaleontology, 101: 115–126.

Drinia, H., Antonarakou, A., dan Dermitzakis, M., 2003. Planktonic foraminiferal ecozones: Response of the pelagic environment to palaeoclimatic changes in the eastern Mediterranean Sea. Mediterranan Marine Science, 4 (2): 21-38.

EPICA Community members, 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature, 444: 195 – 198.

Fairbanks, R. G., 1989. A 17,000 year glacio-eustatic level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637 - 642.

Gordon, A. L., 2005. Oceanography of the Indonesian Seas and their throughflow. Oceanography, 18 (4): 14 – 27.

Holbourn, A., Andrew S. Henderson, and Macleod, N., 2013. Atlas of Benthic Foraminifera, Wiley- Blackwell, 654h.

Li, B., Jian, Z., dan Wang, P., 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years. Marine Micropaleontology, 32: 59–69.

Linsley, B.K., Thunell, R.C., Morgan, C. and Williams, D.F., 1985. Oxygen minimum expansion in the Sulu Sea, Western Equatorial Pacific, during the last glacial low stand of sea level. Mar. Micropaleontol., 9: 395-418.

Loeblich, J. R., A. R. dan Tappan, H., 1994. Foraminifera of the Sahul Shelf and Timor Sea. Cushman Foundation Special publication no.31. Cushman Foundation for Foraminiferal Research. Cambridge, U.S.A. 661 h.

Maryunani, K.A., 2009. Microfossil approached based on Cendrawasih Bay data, to interpreting and reconstructing equatorial western Pasific paleoclimate since Last Glacial (Late Pleistocene). Dissertation. Program studi Geologi. Fakultas Ilmu Kebumian. Institut Teknologi Bandung. 141 h, tidak dipublikasikan.

Mohtadi, M., Oppo, D.W., Steinke, S., Stuut, J.B.W., De Pol-Holz, R., Hebbeln, D., and Lückge, A., 2011. Glacial to Holocene swings of the Australian–Indonesian monsoon. Nature Geoscience, 4: 540 – 544.

Murgese, D. S. dan de Decker, P., 2007. The Late Quaternary evolution of water masses in the eastern Indian Ocean between Australia and Indonesia, based on benthic foraminifera faunal and carbon isotopes analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 247: 382–401.

Murray, J. W., 1991. Ecology and paleoecology of benthic foraminifera. John Willey & Sons Inc., New York. 397 h.

Murray, J. W., 2006. Ecology and applications of benthic foraminifera. University press.,Cambridge. 426 h.

Pflaumann, U., dan Jian, Z., 1999. Modern distribution patterns of planktonic foraminifera in the South China Sea and Western Pacific: A new transfer technique to estimate regional sea-surface temperatures. Marine Geology, 156 : 41–83.

Sijinkumar, A. V., Nagender Nath, B., Possnert, G., dan Aldahan, A., 2011. Pulleniatina minimum events in the Andaman Sea (the Indian Ocean): Implications for winter monsoon and thermocline changes. Marine Micropaleontology, 81: 88–94.

Spooner, M. I., Barrows, T. T., De Deckker, P., dan Paterne, M., 2005. Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon. Global and Planetary Change , 49: 28– 46.

Tedesco, K., Thunell, R., Astor, Y., dan Muller-Karger, F., 2007. The oxygen isotope composition of planktonic foraminifera from the Cariaco Basin, Venezuela: Seasonal and interannual variations. Marine Micropaleontology, 62: 180–193.

van Marle, L. J., 1991. Eastern Indonesian, Late Cenozoïc smaller benthic foraminifera, North-Holland Publ. 328h.

Wang, P., Jian, Z., Zhao, Q., Li, Q., Wang, R., Liu, Z., Wu, G., Shao, L., Wang, J., Huang, B., Fang, D., Tian, J., Li, J., Li, X., Wei, G., Sun, X., Luo, Y., Su, X., Mao, S., dan Chen, M., 2003. Evolution of the South China Sea and monsoon history revealed in deep-sea records. Chinese Science Bulletin, 48 (23): 2549 – 2561.

Xu, J., Kuhnt, W., Holbourn, A., Andersen, N., dan Bartoli, G., 2008. Changes in the vertical profile of the Indonesian Throughflow during Termination II: Evidence from the Timor Sea. Marine Micropaleontology, 66: 208–221.

Zuraida, R., Holbourn, A., Nurnberg, D., Kuhnt, W., Durkop, A., dan Erichsen, A., 2009. Evidence for Indonesian Throughflow slowdown during Heinrich events 3–5. Paleoceanography, 24: 1 – 15.




DOI: http://dx.doi.org/10.32693/jgk.13.1.2015.259