Tectonics of Volcanogenic Massive Sulphide (VMS) Deposits at Flores Back Arc Basin: A Review

Noor Cahyo Dwi Aryanto, Hananto Kurnio

Abstract


The bathymetry, petrology, marine magnetic, and seismic-SBP data have identified the northwest-southeast direction submarine ridge that shows hydrothermal activity. This activity occurred through Mount Baruna Komba, Abang Komba, and Ibu Komba. The volcanic rocks are andesite basaltic lava flows, tuff, and pumice. The andesite basaltic lava shows porphyritic, intergranular, intersertal to glomeroporphyritic textures. The rock composes anhedral minerals of k-feldspar, plagioclase, and pyroxene. These minerals present in small-sized, short prismatic dispersed in very fine groundmass minerals or glasses. Most of the volcanic rocks have experienced various degrees of alteration. The k-feldspar and plagioclase are most dominantly transformed into sericite, clay mineral, carbonate, epidote and oxide mineral, opaque mineral, and secondary plagioclase through the albitization process, while pyroxene replaced by chlorite. Other minerals are biotite and quartz, and base metals are present Cu, Zn, Ag, As, Pb, and gold. Mineralization categorizes as the phyllic zone, sub-prophylithic zone, and phyllic-potassic zone that formed at a temperature range of 250-400oC. The submarine hydrothermal alteration in the Komba Ridge is associated with a volcanogenic sulphide deposit controlled by crust thinning due to the crust rifts in the back-arc tectonic setting.

Keywords: volcanic rocks, submarine hydrothermal alterations, Komba ridge, volcanogenic massif sulphide (VMS), back-arc


Data batimetri, petrologi, magnetic laut dan seismic-SBP telah memetakan dan mengidentifikasi suatu punggungan bawahlaut berarah baratlaut-tenggara yang memperlihatkan aktifitas hidrotermal bawah laut. Aktifitas tersebut muncul melalui Gunung Baruna Komba, Abang Komba dan Ibu Komba. Batuan gunungapi penyusun adalah aliran lava andesit basaltic, tuf dan pumis. Lava andesit basaltik memperlihatkan tekstur porfiritik, intergranular, intersertal to glomeroporfiritik. Mineral penyusun berupa k-felspar, plagioklas, dan piroksen dalam bentuk mineral anhedral, prismatik pendek berukuran kecil yang berada dalam masa dasar mineral sangat halus atau gelas. Batuan vulkanik telah mengalami ubahan dalam berbagai tingkat, dimana k-flespar dan plagioklas paling dominan terubah menjadi serisit, lempung, karbonat, epidot dan mineral oksida, opak atau plagioklas sekunder melalui proses albitisasi sedangkan piroksen mengalami proses ubahan digantikan oleh klorit. Mineral ubahan lainnya adalah biotit dan kuarsa dan logam dasar seperti Cu, Zn, Ag, As, Pb, dan emas. Mineralisasi dikategorikan sebagai zona filik, zona sub-profillitik, dan zona filik-potasik yang terbentuk pada kisaran suhu 250-400oC. Alterasi hidrotermal bawah laut di Punggungan Komba berasosiasi dengan suatu endapan sulfida volkanogenik yang dikontrol oleh penipisan kerak akibat peregangan kerak dalam tatan tektonik busur belakang.

Keywords: batuan gunungapi, alterasi hidrotermal bawah laut, punggungan Komba, sulfida massif vulkanogenik, busur belakang


Keywords


volcanic rocks;submarine hydrothermal alterations;Komba ridge;volcanogenic massif sulphide (VMS);back-arc

Full Text:

PDF

References


Abadi PS., 1996. Mine planning at Kali Kuning pit, PT Prima Lirang Mining, Indonesia, Unpublished Company Report, p 8.

Acocella, V., 2007. Understanding caldera structure and development: An overview of analogue models compared to natural calderas, Earth Sci. Rev., 85, 125–160.

Aryanto, Noor C.D., 2011. Eksplorasi Mineral Laut Dalam di Perairan Indonesia Sebagai Upaya Inventarisasi Mineral Dasar Laut, Buletin Pusdiklat Geologi, ISSN: 0216-1494.

Barker, P.F. and Hill, I.A., 1980, "Asymmetric spreading in back-arc basins".Nature. 285 (5767): 652–654. Bibcode:1980 Natur.285.652B. doi:10.1038/285652a0

Barrie, C.T., Cathles L. M., Erendi, A., Schwaiger, H., and Murray, C., 1999. Heat and Fluid Flow in Volcanic-Associated Massive Sulphide-Forming Hydrothermal Systems In book: Volcanic-associated massive sulphide deposits: Processes and examples in modern and ancient settings. Ed.8, Ch. 9. 201-220, Publisher: Society of Economic Geologists.

Cole, J. W., D. M. Milner, and K. D. Spinks, 2005. Caldera and caldera structures: A review, Earth Sci. Rev., 69, 1–26.

Colin-García, M., A. Heredia,G. Cordero, A. Camprubí, A. Negrón-Mendoza, F. Ortega-Gutiérrez, H. Beraldi, S. Ramos-Bernal, 2016. "Hydrothermal vents and prebiotic chemistry: a review". Boletín de la Sociedad Geológica Mexicana. 68 (3): 599‒620. doi:10.18268/BSGM2016v68n3a13.

Darman., 2012. Tectonic map of the Lesser 64 Sundalands, Berita Sedimentologi, the Indonesian Journal of Sedimentary Geology No. 25.

Drummond, S.E., and Ohmoto, H., 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems: Economic Geology, v. 80, p. 126–147.

Evans, Anthony M., 1987. An Introduction to Ore Geology, Second Edition Geoscience Text; V.2. Blackwell Scientific Publications, London.

Galley, Alan G., M. D. Hannington, and I. R. Jonasson, 2007. Volcanogenic massive sulphide deposits". Geological Association of Canada, Mineral Deposits Division, Special Publication. 5: 141–161.

Gibson, H.L., 2007. The Role of Extension and Rifting in the Formation and Location of Volcanogenic Massive Sulphide Deposits. Criteria for Recognition. VMS Short Course “Exploration for Volcanic Massive Sulphide Deposits”, Manitoba Mining and Minerals Convention. Laurentian University MERC.

Gorsel, J.T. van, 2018. Banda Sea, Lesser Sunda Islands (incl. Timor). Bibliography of the Geology of Indonesia and Surrounding Areas. Edition 7.0.

Halbach, P., Sarmili, L., Karg, N., Pracejus, B., Melkert, B., Post, J., Rahdens, E., and Haryadi, Y., 2003a. The Break-up of a Submarine Volcano in the Flores-Wetar Basin (Indonesia): Implication for Hydrothermal Mineral Deposition. International Ridge News, 121/ 1:18-22.

Halbach, P., Sarmili, L., Pracejus, B., Karg, M., Melchert, B., Post, J., Rahders, E., Haryadi, Y., Supangat, A., 2003b. Tectonics of the “Komba-ridge” area in the Flores-Wetar Basin (Indonesia) and associated hydrothermal mineralisation of volcanic rocks, Bulletin of Marine Geology, Marine Geological Institute, vol. 18, No. 3.

Hall, R., 2012. Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570-571, 1-41.

Hannington MD, Poulsen KH, Thompson JFH, Sillitoe RH, 1999. Volcanogenic gold in the massive sulphide environment. Volcanic-associated massive sulphide deposits, processes and examples in modern and ancient settings. Rev Econ Geol 8:325–356.

Hannington, M.D., de Ronde, C.E.J., and Petersen, S., 2005. Sea-floor tectonicsand submarine hydrothermal systems, in Hedenquist, J.W., et al., eds., EconomicGeology 100th Anniversary Volume, Society of Economic Geologists,p. 111–141.

Hannington, M.D., 2014. "Volcanogenic massive sulphide deposits". Treatise on Geochemistry (Second Edition). 13: 463–488. doi:10.1016/B978-0-08-095975-7.01120-7. ISBN 9780080983004

Hedenquist, J.W., Matsuhisa, Y., Izawa, E., White, N.C., Giggenbach, W.F.,and Aoki, M., 1993. Geology, geochemistry, and origin of high sulfida-tion Cu-Au mineralization in the Nansatsu district, Japan: EconomicGeology, v. 89, p. 1–30.

Hinschberger, F., Malod, J.A., Réhault, J.P., Villeneuve, M., Royer, J.Y. and Burhanuddin, S., 2005. Late Cenozoic geodynamic evolution of eastern Indonesia. Tectonophysics, 404(1-2), pp.91-118.

Ishibashi, J., Ikegami, F., Tsuji, T. and Urabe, T., 2014. Hydrothermal Activity in the Okinawa Trough Back-Arc Basin: Geological Background and Hydrothermal Mineralization. Subseafloor Biosphere Linked to Hydrothermal Systems, pp 337-359.

Karig, D.E., 1983. Temporal relationships between back arc basin formation and arc volcanism with special reference to the Philippine Sea. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2., Geophys. Monogr. Ser., vol. 27, edited by D. E. Hayes, pp. 318-325, AGU, Washington, D. C.

Kim, H.J., Hyeong-Tae Jou, Gwang Lee, Ji-Hoon Na, Han-Joon Kim, Bong-Cool Suk. 2013. Caldera structure of submarine Volcano #1 on the Tonga Arc at 21009 S, southwestern Pacific: Analysis of multichannel seismic profiling. 2013. Earth Planets and Space 65(8):893-900. DOI: 10.5047/eps.2013.01.002

Koulali, A., Susilo, S., McClusky, S., Meilano, I., Cummins, P., Tregoning, P., Lister, G., Efendi, J. and Syafi'i, M.A., 2016. Crustal strain partitioning and the associated earthquake hazard in the eastern Sunda-Banda arc. Geophysical Research Letters, 43(5), pp.1943-1949.

Lipman, P. W., 1997. Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry, Bull. Volcanol., 59, 198–218.

Magni, V., 2019. The effects of back-arc spreading on arc magmatism. Earth and Planetary Science Letters 519 (2019) 141-151.

McCaffrey, R. and Nabelek, J., 1984. The Geometry of Back Arc thrusting along the Eastern Sunda Arc, Indonesia; Constraints from Earthquake and Gravity Data. Journal of Geophysical Research, Vol. 89, No. B7, pages 6171-6179, July 10.

McCaffrey R, 1988. Active tectonics of the eastern Sunda and Banda arcs. J Geophys Res 93:15163–15182.

Mercier-Langevin, Patrick., Gibson, Harold L., Hannington, Mark D., Goutier, Jean., Monecke, Thomas., Dubé, Benoît., Houlé, Michel G, 2014. "A Special Issue on Archean Magmatism, Volcanism, and Ore Deposits: Part 2. Volcanogenic Massive Sulphide Deposits Preface". Economic Geology. 109 (1): 1–9. doi:10.2113/econgeo.109.1.1

Purwandono, A.F., Bonte, D., Utami, P. and Pramuwijoyo, S., 2019. Tectonic and compositional variation in Flores Island, Indonesia: implication for volcanic structure and geothermal occurrences. European Geothermal Congress 2019. Den Haag, The Netherlands, 11-14.

Sarmili, L., Aryanto, Noor C.D., Halbach, P., Pracejus, B., Rahders, E., Susilo, J., Hutabarat, J. Djohor, S. D., Makarim, S., Purbani, D., Kusumah, G., and Mubandi, A., 2003. Low Temperature Hydrothermal Komba Mountain Complex Waters, Flores Sea, Indonesia. In: Proceedings of the Forum for Research and Development of Energy and Mineral Resources, Jakarta.

Sarmili, L., Halbach, P., Pracejus, B., Rahders, E., Burhanuddin, S., Makarim, S., Purbani, D., Kusumah, G., Soesilo, J., dan Hutabarat, J., 2004. A New Prospect in Hydrothermal Mineralization of the Baruna Komba Submarine Volcano in Flores-Wetar Sea, East Indonesia. In: Bulletin of Marine Geology, 19 (1): p. 19-26.

Sarmili, L. and Suryoko, M.A., 2012. The Formation of Submarine Baruna Komba Ridge on Northwest Flores Waters in relation to low anomaly of marine magnetism. Bulletin of Marine Geology, Vol. 27, No. 1, December 2012, pp. 67-75.

Sarmili, L., Widiatmoko, H.C., Mustafa, M.A., Kamiludin, U., Aryanto, N.C.D., 2013. Laporan Penelitian Sumberdaya Mineral Kelautan Perairan Sangeang, Sumbawa Nusa Tenggara Timur, Puslitbang Geologi Kelautan Bandung, Unpublish Report.

Sarmili, L., and Troa, R.A., 2014. The occurrence of faults and their relationship to the formation of submarine volcanoes on Komba Waters, East Nusa Tenggara, Jurnal Geologi Kelautan, vol. 12, no. 1, 55-64 (in Bahasa).

Sarmili, L., and Hutabarat., J., 2014. Indication of Hydrothermal Alteration Activities Based on Petrography of Volcanic Rocks in Abang Komba Submarine Volcano, East Flores Sea. Bulletin of the Marine Geology, 28 (2): 51-60.

Silver, E.A., Reed D., McCaffrey R., Joyodiwiryo, Y., 1983. Back-arc thrusting in the eastern Sunda arc, Indonesia, a consequence of arc-continent collision. J. Geophys Res 88:7429–7448.

Tate, G.W., McQuarrie, N., van Hinsbergen, D.J., Bakker, R.R., Harris, R. and Jiang, H., 2015. Australia going down under: Quantifying continental subduction during arc-continent accretion in Timor-Leste. Geosphere, 11(6), pp.1860-1883

Tikku, A.A., 2011. A Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia. American Geophysical Union, Fall Meeting 2011, abstract id. T51A-2304.

Wensink, H., 1994. Paleomagnetism of rocks from Sumba: tectonic implications since the late Cretaceous. Journal of Southeast Asian Earth Sciences, 9(1-2), pp.51-65.




DOI: http://dx.doi.org/10.32693/bomg.35.2.2020.679