Site Determination for OTEC Turbine Installation of 100 MW Capacity in North Bali Waters

Delyuzar Ilahude, Ai Yuningsih, Yani Permanawati, Mira Yosi, Rina Zuraida, N. Annisa

Abstract


This research was conducted to investigate a suitable location for the OTEC (Ocean Thermal Energy Conversion) pilot plant in North Bali. The investigation was done by calculating the theoretical potential of electric power output using the method of Uehara and Ikegami (1990) for closed cycle OTEC. OTEC power plants require a temperature difference between surface and bottom water layers at least 20°C. Temperature data were obtained from the HYCOM temperature model for a period of 9 years (2008 - 2017) at 4 points which were verified with field data taken in 2017 using KR Geomarin III. The results of field measurements show that the sea surface temperature (SST) in the study area ranges from 28 to 31°C while at depth of 800 m 5.75°C. ∆T values range from 22 to 25°C. Verification of modelling temperature and measurement temperature shows that the modeling results resemble the temperature of North Bali Waters. Analyses results for the four points showed that B-11, located in the Tedjakula area, has the largest electrical power output (71,109 MW). Thus, point B-11 is the best location for development of OTEC pilot plant in North Bali Waters.

Keywords: sea water temperature, net power, OTEC closed cycle, North Bali


Penelitian ini dilakukan untuk menentukan lokasi yang layak untuk pilot plant OTEC (Ocean Thermal Energy Conversion) di perairan Bali Utara. Penentuan dilakukan dengan menghitungpotensi teoritis output daya listrik menggunakan metoda Uehara dan Ikegami (1990) untuk OTEC siklus tertutup. Pembangkit listrik OTEC membutuhkan perbedaan suhu antara lapisan permukaan dan lapisan dalam sebesar 20°C atau lebih. Data suhu didapatkan dari model suhu HYCOM untuk jangka waktu 9 tahun (2008 – 2017) pada 4 titik yang diverifikasi dengan data lapangan yang diambil pada tahun 2017 dengan menggunakan KR Geomarin III. Hasil pengukuran lapangan menunjukaan bahwa suhu permukaan laut (SPL) daerah penelitian berkisar 28-31°C dan suhu air pada kedalaman 800 m adalah 5,75°C. Nilai ∆T berkisar 22-25°C. Verifikasi suhu hasil pemodelan dengan suhu hasil pengukuran menunjukkan bahwa suhu hasil pemodelan dapat mewakili suhu perairan Bali Utara. Hasil analisis yang dilakukan pada 4 titik menunjukkan bahwa titik B-11 yang terletak di daerah Tedjakula memberikan output daya listrik terbesar (71,109 MW). Titik B-11 merupakan lokasi terbaik untuk pengembangan pilot plant OTEC di perairan Bali Utara.


Kata kunci: suhu air laut, daya listrik, OTEC siklus tertutup, Bali Utara


Keywords


sea water temperature;net power;OTEC closed cycle;North Bali

Full Text:

PDF

References


Abdullah, D.S., 2019. PLN Berhasil Cetak Laba Bersih Rp 7,35 T Semester I Tahun 2019. Siaran Pers 23 Sep 2019. Vice President Public Relation PLN. https://www.pln.co.id/media/siaran-pers/2019/09/pln-berhasil-cetak-laba-bersih-rp-735-t-pada-semester-tahun-2019.

Adiputra, R., T. Utsunomiya, J. Koto, T. Yasunaga, and Y. Ikegami, 2019. Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia. Journal of Marine Science and Technology. https://doi.org/10.1007/s00773-019-00630-7.

Avery, W.H. and C. Wu, 1994. Renewable Energy from The Ocean: A Guide To OTEC. Oxford University Press, Inc.. New York. pp 446.

Bassam, N.E., P. Maegaard, and M.L. Schlichting, 2013. Distributed Renewable Energies for Off-Grid Communities Strategies and Technologies toward Achieving Sustainability in Energy Generation and Supply. Elsevier. https://doi.org/10.1016/B978-0-12-397178-4.00011-6.

Deckker, P.D., 2016. The Indo-Pacific Warm Pool: critical to world oceanography and world climate. Geoscience Letters,doi: 10.1186/s40562-016-0054-3

Finney, K.A., 2008. Ocean Thermal Energy Conversion. Ocean Thermal Energy Conversion. Guelph Engineering Journal, 1:1-23.

Gordon, A.L., and R.A. Fine, 1996. Pathways of water between the Pacific and Indian Oceans in the Indonesian Seas. Nature.379:146–149.

Gross, M.G., 1995. Principles of Oceanography: Seventh Edition. Prentice Hall Inc, New Jersey.

http://ncss.hycom.org/thredds/catalog.html

https://radarbali.jawapos.com/read

Ilahude, D., 2015. Laporan Rekomendasi Kebijakan Rencana Pengembangan Energi Baru Terbarukan Kelautan dalam Mendukung Ketahanan Energi Nasional. Program Penelitian dan Pengembangan Energi dan Sumber Daya Mineral. Pusat Penelitian dan Pengembangan Geologi Kelautan. Balitbang Energi dan Sumber Daya Mineral. Kementerian Energi dan Sumber Daya Mineral.

Ilahude, D., R. Zuraida, A. Yuningsih, M. Yosi, F.B. Prasetio, Y. Permanawati, Y.A. Prihandono, 2017. Penelitian Potensi Panas Laut (OTEC) di Perairan Bali Utara. Puslitbang Geologi Kelautan. Balitbang Energi dan Sumber Daya Mineral. Kementerian Energi dan Sumber Daya Mineral.

Koto, J., 2016. Potential of Ocean Thermal Energy Conversion in Indonesia. International Journal of Environmental Research & Clean Energy, 4(1):1-7.

Martono, 2016. Seasonal and Interannual Variations of Sea Surface Temperature in the Indonesian Waters. ISSN: 0852-0682, EISSN: 2460-3945. Forum Geografi. 30(2):120-129.

Masutani, S.M. and P.K. Takahashi, 2001. Ocean Thermal Energy Conversion. Academic Press. University of Hawaii.

McCaffrey, R., and J.L. Nabelek, 1987. Earthquakes, gravity, and the origin of the Bali Basin: An example of a Nascent Continental Fold-and-Thrust Belt. Journal of Geophysical Research Atmospheres,doi: 10.1029/JB092iB01p00441. 92(B1):441-460.

Montegut, C.B., G. Madec, A.S. Fischer, A. Lazar, and D. Iudicone, 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. Journal of Geophysical Research, 109: C12003, doi:10.1029/2004JC002378.

Multon, Bernard, 2012. Marine Renewable Energy Handbook. ISTE Ltd., and John Wiley & Sons, Inc., UK and USA.

Ohlmann, J.C., D.A. Siegel, and C. Gautier, 1996. Ocean Mixed Layer Radiant Heating and Solar Penetration: A Global Analysis. Journal of Climate, 9:2265-2279.

Sprintall, J., A.L. Gordon, A.K. Larrouy, T. Lee, J.T. Potemra, K. Pujiana, and S.E. Wijffels, 2014. The Indonesian seas and their role in the coupled ocean–climate system. Nature Geosccience, 7:487-492, doi: https://doi.org/10.1038/ngeo2188.

Sullivan, S.M., M.D. Sands, J.R. Donat, P. Jepsen, M. Smookler, and J.F. Villa, 1981. Environmental Assessment Ocean Thermal Energy Conversion (OTEC) Pilot Plants.Earth Sciences Division. Universitas of California. Berkeley.

Syamsuddin, M.L., A. Attamimi, A.P. Nugraha, S. Gibran, A.Q. Afifah, and N. Oriana. 2015. OTEC Potential in The Indonesian Seas. Energy Procedia, 65: 215-222.

Uehara, H., and Ikegami. Y., 1990. Optimization of a Closed Cycle OTEC System. Journal of Solar Energy Engineering, 112: 247-256.

Uehara, H., Dilao, C.O.,and Nakaoka, T. 1988. Conceptual Design Of Ocean Thermal Energy Conversion (OTEC) Power Plants in The Philippines. Solar Energy, 41 (5):431-441.

Vega, L.A., 1992. Ocean Thermal Energy Conversion. Encyclopedia of Sustainability Science and Technology. Springer. Pp. 7296-7328.

Vyawahare, M., 2015. Sustainability Hawaii First to Harness Deep-Ocean Temperatures for Power A new power plant offshore converts the temperature difference between sea surface and deep waters into electricity. ClimateWire. https://www.scientificamerican.com/article/hawaii-first-to-harness-deep-ocean-temperatures.




DOI: http://dx.doi.org/10.32693/bomg.35.1.2020.594